DTT performance benchmarks#

This example benchmarks the DTT performance for the different algorithms available in Shamrock

 9 import random
10 import time
11
12 import matplotlib.colors as colors
13 import matplotlib.pyplot as plt
14 import numpy as np
15
16 import shamrock
17
18 # If we use the shamrock executable to run this script instead of the python interpreter,
19 # we should not initialize the system as the shamrock executable needs to handle specific MPI logic
20 if not shamrock.sys.is_initialized():
21     shamrock.change_loglevel(1)
22     shamrock.sys.init("0:0")

Main benchmark functions

28 bounding_box = shamrock.math.AABB_f64_3((0.0, 0.0, 0.0), (1.0, 1.0, 1.0))
29
30
31 def benchmark_dtt_core(N, theta_crit, compression_level, ordered_result, nb_repeat=10):
32     times = []
33     random.seed(111)
34     max_mem_delta = 0
35     for i in range(nb_repeat):
36         positions = shamrock.algs.mock_buffer_f64_3(
37             random.randint(0, 1000000), N, bounding_box.lower, bounding_box.upper
38         )
39         tree = shamrock.tree.CLBVH_u64_f64_3()
40         tree.rebuild_from_positions(positions, bounding_box, compression_level)
41         shamrock.backends.reset_mem_info_max()
42         mem_info_before = shamrock.backends.get_mem_perf_info()
43         times.append(
44             shamrock.tree.benchmark_clbvh_dual_tree_traversal(tree, theta_crit, ordered_result)
45             * 1000
46         )
47         mem_info_after = shamrock.backends.get_mem_perf_info()
48
49         mem_delta = (
50             mem_info_after.max_allocated_byte_device - mem_info_before.max_allocated_byte_device
51         )
52         max_mem_delta = max(max_mem_delta, mem_delta)
53     return times, max_mem_delta
54
55
56 def benchmark_dtt(N, theta_crit, compression_level, ordered_result, nb_repeat=10):
57     times, max_mem_delta = benchmark_dtt_core(
58         N, theta_crit, compression_level, ordered_result, nb_repeat
59     )
60     return min(times), max(times), sum(times) / nb_repeat, max_mem_delta

Run the performance test for all parameters

 65 def run_performance_sweep(compression_level, threshold_run, ordered_result):
 66
 67     # Define parameter ranges
 68     # logspace as array
 69     particle_counts = np.logspace(2, 7, 10).astype(int).tolist()
 70     theta_crits = [0.1, 0.3, 0.5, 0.7, 0.9]
 71
 72     # Initialize results matrix
 73     results_mean = np.zeros((len(theta_crits), len(particle_counts)))
 74     results_min = np.zeros((len(theta_crits), len(particle_counts)))
 75     results_max = np.zeros((len(theta_crits), len(particle_counts)))
 76     results_max_mem_delta = np.zeros((len(theta_crits), len(particle_counts)))
 77
 78     print(f"Particle counts: {particle_counts}")
 79     print(f"Theta_crit values: {theta_crits}")
 80     print(f"Compression level: {compression_level}")
 81
 82     total_runs = len(particle_counts) * len(theta_crits)
 83     current_run = 0
 84
 85     for i, theta_crit in enumerate(theta_crits):
 86         exceed_mem = False
 87         for j, N in enumerate(particle_counts):
 88             current_run += 1
 89
 90             if exceed_mem:
 91                 print(
 92                     f"[{current_run:2d}/{total_runs}] Skipping N={N:5d}, theta_crit={theta_crit:.1f}"
 93                 )
 94                 results_mean[i, j] = np.nan
 95                 results_min[i, j] = np.nan
 96                 results_max[i, j] = np.nan
 97                 continue
 98
 99             print(
100                 f"[{current_run:2d}/{total_runs}] Running N={N:5d}, theta_crit={theta_crit:.1f}...",
101                 end=" ",
102             )
103
104             start_time = time.time()
105             min_time, max_time, mean_time, max_mem_delta = benchmark_dtt(
106                 N, theta_crit, compression_level, ordered_result
107             )
108             elapsed = time.time() - start_time
109
110             results_mean[i, j] = mean_time
111             results_min[i, j] = min_time
112             results_max[i, j] = max_time
113             results_max_mem_delta[i, j] = max_mem_delta
114
115             print(f"mean={mean_time:.3f}ms (took {elapsed:.1f}s)")
116
117             if max_mem_delta > threshold_run:
118                 exceed_mem = True
119
120     return (
121         particle_counts,
122         theta_crits,
123         results_mean,
124         results_min,
125         results_max,
126         results_max_mem_delta,
127     )

Create checkerboard plot with execution times and relative performance to reference algorithm

132 def create_checkerboard_plot(
133     particle_counts,
134     theta_crits,
135     results_data,
136     compression_level,
137     algname,
138     max_axis_value,
139     reference_data,
140     results_max_mem_delta,
141 ):
142     """Create checkerboard plot with execution times"""
143
144     fig, ax = plt.subplots(figsize=(12, 8))
145
146     # Calculate relative performance compared to reference algorithm
147     # results_data / reference_data gives the ratio (>1 means slower, <1 means faster)
148     relative_performance = results_data / reference_data
149
150     # Create the heatmap with relative performance values
151     # Create a masked array to handle NaN values (skipped benchmarks) as white
152     masked_relative = np.ma.masked_invalid(relative_performance)
153
154     # Use a diverging colormap: red for better performance (<1), green for worse (>1)
155     # RdYlGn_r (reversed) has green for high values (worse) and red for low values (better)
156     cmap = plt.cm.RdYlGn_r.copy()  # Green for >1 (slower), Red for <1 (faster)
157     cmap.set_bad(color="white")  # Set NaN values to white
158
159     # Set the color scale limits for relative performance
160     vmin = 0.5
161     vmax = 1.5
162
163     im = ax.imshow(
164         masked_relative, cmap=cmap, aspect="auto", interpolation="nearest", vmin=vmin, vmax=vmax
165     )
166
167     # Set ticks and labels
168     ax.set_xticks(range(len(particle_counts)))
169     ax.set_yticks(range(len(theta_crits)))
170     ax.set_xticklabels([f"{N//1000}k" if N >= 1000 else str(N) for N in particle_counts])
171     ax.set_yticklabels([f"{theta:.1f}" for theta in theta_crits])
172
173     # Add labels
174     ax.set_xlabel("Particle Count")
175     ax.set_ylabel("Theta Critical")
176     ax.set_title(
177         f"Dual Tree Traversal Performance\n(Colors: Relative to Reference, Text: Absolute Time in ms)\ncompression level = {compression_level} algorithm = {algname}",
178         pad=20,
179     )
180
181     # Add text annotations showing the values
182     for i in range(len(theta_crits)):
183         for j in range(len(particle_counts)):
184             value = results_data[i, j]
185
186             if np.isnan(value):
187                 # For skipped benchmarks, show "SKIPPED" in black on white background
188                 # ax.text(j, i, 'SKIPPED', ha='center', va='center',
189                 #       color='black', fontweight='bold', fontsize=8)
190                 pass
191             else:
192                 perf = relative_performance[i, j]
193                 mem_delta = results_max_mem_delta[i, j] / 1e6
194                 text_color = "black"
195                 ax.text(
196                     j,
197                     i,
198                     f"{value:.2f}ms\n{perf:.2f}\n{mem_delta:.2f}MB",
199                     ha="center",
200                     va="center",
201                     color=text_color,
202                     fontweight="bold",
203                     fontsize=10,
204                 )
205
206     # Add colorbar for relative performance
207     cbar = plt.colorbar(im, ax=ax, shrink=0.8)
208     cbar.set_label("Relative performance (time / reference time)")
209     cbar.ax.tick_params(labelsize=10)
210
211     # Add custom tick labels for better interpretation
212     tick_positions = [0.1, 0.2, 0.5, 1.0, 2.0, 3.0]
213     cbar.set_ticks([pos for pos in tick_positions if vmin <= pos <= vmax])
214
215     # Improve layout
216     plt.tight_layout()
217
218     # Add grid for better readability
219     ax.set_xticks(np.arange(len(particle_counts)) - 0.5, minor=True)
220     ax.set_yticks(np.arange(len(theta_crits)) - 0.5, minor=True)
221     ax.grid(which="minor", color="black", linestyle="-", linewidth=1, alpha=0.3)
222
223     return fig, ax

List current implementation

impl_param(impl_name="scan_multipass", params="")

List all implementations available

[impl_param(impl_name="reference", params=""), impl_param(impl_name="parallel_select", params=""), impl_param(impl_name="scan_multipass", params="")]

Run the performance benchmarks for all implementations

240 results = {}
241
242
243 for ordered_result in [True, False]:
244     for default_impl in all_default_impls:
245         shamrock.tree.set_impl_clbvh_dual_tree_traversal(
246             default_impl.impl_name, default_impl.params
247         )
248
249         n = default_impl.impl_name + " " + default_impl.params + "ordered=" + str(ordered_result)
250
251         print(f"Running DTT performance benchmarks for {n}...")
252
253         compression_level = 4
254
255         threshold_run = 5e6
256         # Run the performance sweep
257         (
258             particle_counts,
259             theta_crits,
260             results_mean,
261             results_min,
262             results_max,
263             results_max_mem_delta,
264         ) = run_performance_sweep(compression_level, threshold_run, ordered_result)
265
266         results[n] = {
267             "particle_counts": particle_counts,
268             "theta_crits": theta_crits,
269             "results_mean": results_mean,
270             "results_min": results_min,
271             "results_max": results_max,
272             "results_max_mem_delta": results_max_mem_delta,
273             "name": n,
274         }
Info: setting dtt implementation to impl : reference                                 [tree][rank=0]
Running DTT performance benchmarks for reference ordered=True...
Particle counts: [100, 359, 1291, 4641, 16681, 59948, 215443, 774263, 2782559, 10000000]
Theta_crit values: [0.1, 0.3, 0.5, 0.7, 0.9]
Compression level: 4
[ 1/50] Running N=  100, theta_crit=0.1... mean=2.287ms (took 0.0s)
[ 2/50] Running N=  359, theta_crit=0.1... mean=2.277ms (took 0.0s)
[ 3/50] Running N= 1291, theta_crit=0.1... mean=2.680ms (took 0.1s)
[ 4/50] Running N= 4641, theta_crit=0.1... mean=7.827ms (took 0.2s)
[ 5/50] Running N=16681, theta_crit=0.1... mean=74.332ms (took 1.0s)
[ 6/50] Skipping N=59948, theta_crit=0.1
[ 7/50] Skipping N=215443, theta_crit=0.1
[ 8/50] Skipping N=774263, theta_crit=0.1
[ 9/50] Skipping N=2782559, theta_crit=0.1
[10/50] Skipping N=10000000, theta_crit=0.1
[11/50] Running N=  100, theta_crit=0.3... mean=2.615ms (took 0.1s)
[12/50] Running N=  359, theta_crit=0.3... mean=2.252ms (took 0.0s)
[13/50] Running N= 1291, theta_crit=0.3... mean=2.626ms (took 0.1s)
[14/50] Running N= 4641, theta_crit=0.3... mean=7.565ms (took 0.2s)
[15/50] Running N=16681, theta_crit=0.3... mean=58.487ms (took 0.8s)
[16/50] Skipping N=59948, theta_crit=0.3
[17/50] Skipping N=215443, theta_crit=0.3
[18/50] Skipping N=774263, theta_crit=0.3
[19/50] Skipping N=2782559, theta_crit=0.3
[20/50] Skipping N=10000000, theta_crit=0.3
[21/50] Running N=  100, theta_crit=0.5... mean=2.178ms (took 0.0s)
[22/50] Running N=  359, theta_crit=0.5... mean=3.159ms (took 0.1s)
[23/50] Running N= 1291, theta_crit=0.5... mean=3.907ms (took 0.1s)
[24/50] Running N= 4641, theta_crit=0.5... mean=7.750ms (took 0.2s)
[25/50] Running N=16681, theta_crit=0.5... mean=39.260ms (took 0.6s)
[26/50] Skipping N=59948, theta_crit=0.5
[27/50] Skipping N=215443, theta_crit=0.5
[28/50] Skipping N=774263, theta_crit=0.5
[29/50] Skipping N=2782559, theta_crit=0.5
[30/50] Skipping N=10000000, theta_crit=0.5
[31/50] Running N=  100, theta_crit=0.7... mean=2.983ms (took 0.1s)
[32/50] Running N=  359, theta_crit=0.7... mean=3.112ms (took 0.1s)
[33/50] Running N= 1291, theta_crit=0.7... mean=2.794ms (took 0.1s)
[34/50] Running N= 4641, theta_crit=0.7... mean=6.317ms (took 0.1s)
[35/50] Running N=16681, theta_crit=0.7... mean=16.164ms (took 0.4s)
[36/50] Running N=59948, theta_crit=0.7... mean=73.924ms (took 1.3s)
[37/50] Skipping N=215443, theta_crit=0.7
[38/50] Skipping N=774263, theta_crit=0.7
[39/50] Skipping N=2782559, theta_crit=0.7
[40/50] Skipping N=10000000, theta_crit=0.7
[41/50] Running N=  100, theta_crit=0.9... mean=1.850ms (took 0.0s)
[42/50] Running N=  359, theta_crit=0.9... mean=2.226ms (took 0.0s)
[43/50] Running N= 1291, theta_crit=0.9... mean=2.429ms (took 0.1s)
[44/50] Running N= 4641, theta_crit=0.9... mean=3.581ms (took 0.1s)
[45/50] Running N=16681, theta_crit=0.9... mean=8.492ms (took 0.2s)
[46/50] Running N=59948, theta_crit=0.9... mean=38.277ms (took 0.9s)
[47/50] Skipping N=215443, theta_crit=0.9
[48/50] Skipping N=774263, theta_crit=0.9
[49/50] Skipping N=2782559, theta_crit=0.9
[50/50] Skipping N=10000000, theta_crit=0.9
Info: setting dtt implementation to impl : parallel_select                           [tree][rank=0]
Running DTT performance benchmarks for parallel_select ordered=True...
Particle counts: [100, 359, 1291, 4641, 16681, 59948, 215443, 774263, 2782559, 10000000]
Theta_crit values: [0.1, 0.3, 0.5, 0.7, 0.9]
Compression level: 4
[ 1/50] Running N=  100, theta_crit=0.1... mean=2.041ms (took 0.0s)
[ 2/50] Running N=  359, theta_crit=0.1... mean=2.089ms (took 0.0s)
[ 3/50] Running N= 1291, theta_crit=0.1... mean=3.102ms (took 0.1s)
[ 4/50] Running N= 4641, theta_crit=0.1... mean=10.638ms (took 0.2s)
[ 5/50] Running N=16681, theta_crit=0.1... mean=91.366ms (took 1.0s)
[ 6/50] Skipping N=59948, theta_crit=0.1
[ 7/50] Skipping N=215443, theta_crit=0.1
[ 8/50] Skipping N=774263, theta_crit=0.1
[ 9/50] Skipping N=2782559, theta_crit=0.1
[10/50] Skipping N=10000000, theta_crit=0.1
[11/50] Running N=  100, theta_crit=0.3... mean=1.146ms (took 0.0s)
[12/50] Running N=  359, theta_crit=0.3... mean=1.177ms (took 0.0s)
[13/50] Running N= 1291, theta_crit=0.3... mean=1.699ms (took 0.0s)
[14/50] Running N= 4641, theta_crit=0.3... mean=8.336ms (took 0.1s)
[15/50] Running N=16681, theta_crit=0.3... mean=92.717ms (took 1.0s)
[16/50] Skipping N=59948, theta_crit=0.3
[17/50] Skipping N=215443, theta_crit=0.3
[18/50] Skipping N=774263, theta_crit=0.3
[19/50] Skipping N=2782559, theta_crit=0.3
[20/50] Skipping N=10000000, theta_crit=0.3
[21/50] Running N=  100, theta_crit=0.5... mean=1.107ms (took 0.0s)
[22/50] Running N=  359, theta_crit=0.5... mean=1.173ms (took 0.0s)
[23/50] Running N= 1291, theta_crit=0.5... mean=1.706ms (took 0.0s)
[24/50] Running N= 4641, theta_crit=0.5... mean=8.583ms (took 0.1s)
[25/50] Running N=16681, theta_crit=0.5... mean=67.601ms (took 0.8s)
[26/50] Running N=59948, theta_crit=0.5... mean=502.605ms (took 5.4s)
[27/50] Skipping N=215443, theta_crit=0.5
[28/50] Skipping N=774263, theta_crit=0.5
[29/50] Skipping N=2782559, theta_crit=0.5
[30/50] Skipping N=10000000, theta_crit=0.5
[31/50] Running N=  100, theta_crit=0.7... mean=1.134ms (took 0.0s)
[32/50] Running N=  359, theta_crit=0.7... mean=1.159ms (took 0.0s)
[33/50] Running N= 1291, theta_crit=0.7... mean=1.803ms (took 0.0s)
[34/50] Running N= 4641, theta_crit=0.7... mean=7.259ms (took 0.1s)
[35/50] Running N=16681, theta_crit=0.7... mean=44.093ms (took 0.6s)
[36/50] Running N=59948, theta_crit=0.7... mean=272.417ms (took 3.1s)
[37/50] Skipping N=215443, theta_crit=0.7
[38/50] Skipping N=774263, theta_crit=0.7
[39/50] Skipping N=2782559, theta_crit=0.7
[40/50] Skipping N=10000000, theta_crit=0.7
[41/50] Running N=  100, theta_crit=0.9... mean=1.136ms (took 0.0s)
[42/50] Running N=  359, theta_crit=0.9... mean=1.200ms (took 0.0s)
[43/50] Running N= 1291, theta_crit=0.9... mean=1.751ms (took 0.0s)
[44/50] Running N= 4641, theta_crit=0.9... mean=7.027ms (took 0.1s)
[45/50] Running N=16681, theta_crit=0.9... mean=30.733ms (took 0.4s)
[46/50] Running N=59948, theta_crit=0.9... mean=166.739ms (took 2.0s)
[47/50] Skipping N=215443, theta_crit=0.9
[48/50] Skipping N=774263, theta_crit=0.9
[49/50] Skipping N=2782559, theta_crit=0.9
[50/50] Skipping N=10000000, theta_crit=0.9
Info: setting dtt implementation to impl : scan_multipass                            [tree][rank=0]
Running DTT performance benchmarks for scan_multipass ordered=True...
Particle counts: [100, 359, 1291, 4641, 16681, 59948, 215443, 774263, 2782559, 10000000]
Theta_crit values: [0.1, 0.3, 0.5, 0.7, 0.9]
Compression level: 4
[ 1/50] Running N=  100, theta_crit=0.1... mean=7.124ms (took 0.1s)
[ 2/50] Running N=  359, theta_crit=0.1... mean=10.584ms (took 0.1s)
[ 3/50] Running N= 1291, theta_crit=0.1... mean=13.948ms (took 0.2s)
[ 4/50] Running N= 4641, theta_crit=0.1... mean=20.790ms (took 0.3s)
[ 5/50] Skipping N=16681, theta_crit=0.1
[ 6/50] Skipping N=59948, theta_crit=0.1
[ 7/50] Skipping N=215443, theta_crit=0.1
[ 8/50] Skipping N=774263, theta_crit=0.1
[ 9/50] Skipping N=2782559, theta_crit=0.1
[10/50] Skipping N=10000000, theta_crit=0.1
[11/50] Running N=  100, theta_crit=0.3... mean=8.662ms (took 0.1s)
[12/50] Running N=  359, theta_crit=0.3... mean=11.787ms (took 0.1s)
[13/50] Running N= 1291, theta_crit=0.3... mean=13.737ms (took 0.2s)
[14/50] Running N= 4641, theta_crit=0.3... mean=17.903ms (took 0.3s)
[15/50] Skipping N=16681, theta_crit=0.3
[16/50] Skipping N=59948, theta_crit=0.3
[17/50] Skipping N=215443, theta_crit=0.3
[18/50] Skipping N=774263, theta_crit=0.3
[19/50] Skipping N=2782559, theta_crit=0.3
[20/50] Skipping N=10000000, theta_crit=0.3
[21/50] Running N=  100, theta_crit=0.5... mean=6.420ms (took 0.1s)
[22/50] Running N=  359, theta_crit=0.5... mean=8.800ms (took 0.1s)
[23/50] Running N= 1291, theta_crit=0.5... mean=12.065ms (took 0.2s)
[24/50] Running N= 4641, theta_crit=0.5... mean=17.254ms (took 0.3s)
[25/50] Skipping N=16681, theta_crit=0.5
[26/50] Skipping N=59948, theta_crit=0.5
[27/50] Skipping N=215443, theta_crit=0.5
[28/50] Skipping N=774263, theta_crit=0.5
[29/50] Skipping N=2782559, theta_crit=0.5
[30/50] Skipping N=10000000, theta_crit=0.5
[31/50] Running N=  100, theta_crit=0.7... mean=6.397ms (took 0.1s)
[32/50] Running N=  359, theta_crit=0.7... mean=9.044ms (took 0.1s)
[33/50] Running N= 1291, theta_crit=0.7... mean=11.904ms (took 0.2s)
[34/50] Running N= 4641, theta_crit=0.7... mean=15.936ms (took 0.2s)
[35/50] Running N=16681, theta_crit=0.7... mean=30.276ms (took 0.5s)
[36/50] Skipping N=59948, theta_crit=0.7
[37/50] Skipping N=215443, theta_crit=0.7
[38/50] Skipping N=774263, theta_crit=0.7
[39/50] Skipping N=2782559, theta_crit=0.7
[40/50] Skipping N=10000000, theta_crit=0.7
[41/50] Running N=  100, theta_crit=0.9... mean=6.371ms (took 0.1s)
[42/50] Running N=  359, theta_crit=0.9... mean=9.724ms (took 0.1s)
[43/50] Running N= 1291, theta_crit=0.9... mean=12.196ms (took 0.2s)
[44/50] Running N= 4641, theta_crit=0.9... mean=15.235ms (took 0.2s)
[45/50] Running N=16681, theta_crit=0.9... mean=32.770ms (took 0.6s)
[46/50] Skipping N=59948, theta_crit=0.9
[47/50] Skipping N=215443, theta_crit=0.9
[48/50] Skipping N=774263, theta_crit=0.9
[49/50] Skipping N=2782559, theta_crit=0.9
[50/50] Skipping N=10000000, theta_crit=0.9
Info: setting dtt implementation to impl : reference                                 [tree][rank=0]
Running DTT performance benchmarks for reference ordered=False...
Particle counts: [100, 359, 1291, 4641, 16681, 59948, 215443, 774263, 2782559, 10000000]
Theta_crit values: [0.1, 0.3, 0.5, 0.7, 0.9]
Compression level: 4
[ 1/50] Running N=  100, theta_crit=0.1... mean=1.711ms (took 0.0s)
[ 2/50] Running N=  359, theta_crit=0.1... mean=1.728ms (took 0.0s)
[ 3/50] Running N= 1291, theta_crit=0.1... mean=1.988ms (took 0.1s)
[ 4/50] Running N= 4641, theta_crit=0.1... mean=3.536ms (took 0.1s)
[ 5/50] Running N=16681, theta_crit=0.1... mean=19.867ms (took 0.3s)
[ 6/50] Skipping N=59948, theta_crit=0.1
[ 7/50] Skipping N=215443, theta_crit=0.1
[ 8/50] Skipping N=774263, theta_crit=0.1
[ 9/50] Skipping N=2782559, theta_crit=0.1
[10/50] Skipping N=10000000, theta_crit=0.1
[11/50] Running N=  100, theta_crit=0.3... mean=1.104ms (took 0.0s)
[12/50] Running N=  359, theta_crit=0.3... mean=1.018ms (took 0.0s)
[13/50] Running N= 1291, theta_crit=0.3... mean=1.099ms (took 0.0s)
[14/50] Running N= 4641, theta_crit=0.3... mean=2.734ms (took 0.1s)
[15/50] Running N=16681, theta_crit=0.3... mean=19.843ms (took 0.3s)
[16/50] Skipping N=59948, theta_crit=0.3
[17/50] Skipping N=215443, theta_crit=0.3
[18/50] Skipping N=774263, theta_crit=0.3
[19/50] Skipping N=2782559, theta_crit=0.3
[20/50] Skipping N=10000000, theta_crit=0.3
[21/50] Running N=  100, theta_crit=0.5... mean=1.108ms (took 0.0s)
[22/50] Running N=  359, theta_crit=0.5... mean=1.049ms (took 0.0s)
[23/50] Running N= 1291, theta_crit=0.5... mean=1.153ms (took 0.0s)
[24/50] Running N= 4641, theta_crit=0.5... mean=2.560ms (took 0.1s)
[25/50] Running N=16681, theta_crit=0.5... mean=11.820ms (took 0.2s)
[26/50] Running N=59948, theta_crit=0.5... mean=68.770ms (took 1.0s)
[27/50] Skipping N=215443, theta_crit=0.5
[28/50] Skipping N=774263, theta_crit=0.5
[29/50] Skipping N=2782559, theta_crit=0.5
[30/50] Skipping N=10000000, theta_crit=0.5
[31/50] Running N=  100, theta_crit=0.7... mean=1.033ms (took 0.0s)
[32/50] Running N=  359, theta_crit=0.7... mean=0.982ms (took 0.0s)
[33/50] Running N= 1291, theta_crit=0.7... mean=1.120ms (took 0.0s)
[34/50] Running N= 4641, theta_crit=0.7... mean=2.156ms (took 0.1s)
[35/50] Running N=16681, theta_crit=0.7... mean=7.123ms (took 0.2s)
[36/50] Running N=59948, theta_crit=0.7... mean=32.247ms (took 0.7s)
[37/50] Skipping N=215443, theta_crit=0.7
[38/50] Skipping N=774263, theta_crit=0.7
[39/50] Skipping N=2782559, theta_crit=0.7
[40/50] Skipping N=10000000, theta_crit=0.7
[41/50] Running N=  100, theta_crit=0.9... mean=1.066ms (took 0.0s)
[42/50] Running N=  359, theta_crit=0.9... mean=1.018ms (took 0.0s)
[43/50] Running N= 1291, theta_crit=0.9... mean=1.180ms (took 0.0s)
[44/50] Running N= 4641, theta_crit=0.9... mean=1.837ms (took 0.1s)
[45/50] Running N=16681, theta_crit=0.9... mean=4.853ms (took 0.2s)
[46/50] Running N=59948, theta_crit=0.9... mean=19.249ms (took 0.5s)
[47/50] Skipping N=215443, theta_crit=0.9
[48/50] Skipping N=774263, theta_crit=0.9
[49/50] Skipping N=2782559, theta_crit=0.9
[50/50] Skipping N=10000000, theta_crit=0.9
Info: setting dtt implementation to impl : parallel_select                           [tree][rank=0]
Running DTT performance benchmarks for parallel_select ordered=False...
Particle counts: [100, 359, 1291, 4641, 16681, 59948, 215443, 774263, 2782559, 10000000]
Theta_crit values: [0.1, 0.3, 0.5, 0.7, 0.9]
Compression level: 4
[ 1/50] Running N=  100, theta_crit=0.1... mean=1.252ms (took 0.0s)
[ 2/50] Running N=  359, theta_crit=0.1... mean=1.170ms (took 0.0s)
[ 3/50] Running N= 1291, theta_crit=0.1... mean=1.697ms (took 0.0s)
[ 4/50] Running N= 4641, theta_crit=0.1... mean=8.417ms (took 0.1s)
[ 5/50] Running N=16681, theta_crit=0.1... mean=93.847ms (took 1.1s)
[ 6/50] Skipping N=59948, theta_crit=0.1
[ 7/50] Skipping N=215443, theta_crit=0.1
[ 8/50] Skipping N=774263, theta_crit=0.1
[ 9/50] Skipping N=2782559, theta_crit=0.1
[10/50] Skipping N=10000000, theta_crit=0.1
[11/50] Running N=  100, theta_crit=0.3... mean=1.152ms (took 0.0s)
[12/50] Running N=  359, theta_crit=0.3... mean=1.179ms (took 0.0s)
[13/50] Running N= 1291, theta_crit=0.3... mean=1.722ms (took 0.0s)
[14/50] Running N= 4641, theta_crit=0.3... mean=8.577ms (took 0.1s)
[15/50] Running N=16681, theta_crit=0.3... mean=93.968ms (took 1.1s)
[16/50] Skipping N=59948, theta_crit=0.3
[17/50] Skipping N=215443, theta_crit=0.3
[18/50] Skipping N=774263, theta_crit=0.3
[19/50] Skipping N=2782559, theta_crit=0.3
[20/50] Skipping N=10000000, theta_crit=0.3
[21/50] Running N=  100, theta_crit=0.5... mean=1.149ms (took 0.0s)
[22/50] Running N=  359, theta_crit=0.5... mean=1.158ms (took 0.0s)
[23/50] Running N= 1291, theta_crit=0.5... mean=1.762ms (took 0.0s)
[24/50] Running N= 4641, theta_crit=0.5... mean=8.681ms (took 0.1s)
[25/50] Running N=16681, theta_crit=0.5... mean=68.701ms (took 0.8s)
[26/50] Running N=59948, theta_crit=0.5... mean=507.418ms (took 5.4s)
[27/50] Skipping N=215443, theta_crit=0.5
[28/50] Skipping N=774263, theta_crit=0.5
[29/50] Skipping N=2782559, theta_crit=0.5
[30/50] Skipping N=10000000, theta_crit=0.5
[31/50] Running N=  100, theta_crit=0.7... mean=1.143ms (took 0.0s)
[32/50] Running N=  359, theta_crit=0.7... mean=1.221ms (took 0.0s)
[33/50] Running N= 1291, theta_crit=0.7... mean=1.719ms (took 0.0s)
[34/50] Running N= 4641, theta_crit=0.7... mean=7.452ms (took 0.1s)
[35/50] Running N=16681, theta_crit=0.7... mean=44.685ms (took 0.6s)
[36/50] Running N=59948, theta_crit=0.7... mean=274.371ms (took 3.1s)
[37/50] Skipping N=215443, theta_crit=0.7
[38/50] Skipping N=774263, theta_crit=0.7
[39/50] Skipping N=2782559, theta_crit=0.7
[40/50] Skipping N=10000000, theta_crit=0.7
[41/50] Running N=  100, theta_crit=0.9... mean=1.157ms (took 0.0s)
[42/50] Running N=  359, theta_crit=0.9... mean=1.191ms (took 0.0s)
[43/50] Running N= 1291, theta_crit=0.9... mean=1.849ms (took 0.0s)
[44/50] Running N= 4641, theta_crit=0.9... mean=5.762ms (took 0.1s)
[45/50] Running N=16681, theta_crit=0.9... mean=30.905ms (took 0.4s)
[46/50] Running N=59948, theta_crit=0.9... mean=167.306ms (took 2.0s)
[47/50] Skipping N=215443, theta_crit=0.9
[48/50] Skipping N=774263, theta_crit=0.9
[49/50] Skipping N=2782559, theta_crit=0.9
[50/50] Skipping N=10000000, theta_crit=0.9
Info: setting dtt implementation to impl : scan_multipass                            [tree][rank=0]
Running DTT performance benchmarks for scan_multipass ordered=False...
Particle counts: [100, 359, 1291, 4641, 16681, 59948, 215443, 774263, 2782559, 10000000]
Theta_crit values: [0.1, 0.3, 0.5, 0.7, 0.9]
Compression level: 4
[ 1/50] Running N=  100, theta_crit=0.1... mean=4.303ms (took 0.1s)
[ 2/50] Running N=  359, theta_crit=0.1... mean=5.759ms (took 0.1s)
[ 3/50] Running N= 1291, theta_crit=0.1... mean=7.517ms (took 0.1s)
[ 4/50] Running N= 4641, theta_crit=0.1... mean=10.549ms (took 0.1s)
[ 5/50] Skipping N=16681, theta_crit=0.1
[ 6/50] Skipping N=59948, theta_crit=0.1
[ 7/50] Skipping N=215443, theta_crit=0.1
[ 8/50] Skipping N=774263, theta_crit=0.1
[ 9/50] Skipping N=2782559, theta_crit=0.1
[10/50] Skipping N=10000000, theta_crit=0.1
[11/50] Running N=  100, theta_crit=0.3... mean=4.033ms (took 0.1s)
[12/50] Running N=  359, theta_crit=0.3... mean=5.743ms (took 0.1s)
[13/50] Running N= 1291, theta_crit=0.3... mean=7.787ms (took 0.1s)
[14/50] Running N= 4641, theta_crit=0.3... mean=10.609ms (took 0.2s)
[15/50] Skipping N=16681, theta_crit=0.3
[16/50] Skipping N=59948, theta_crit=0.3
[17/50] Skipping N=215443, theta_crit=0.3
[18/50] Skipping N=774263, theta_crit=0.3
[19/50] Skipping N=2782559, theta_crit=0.3
[20/50] Skipping N=10000000, theta_crit=0.3
[21/50] Running N=  100, theta_crit=0.5... mean=3.872ms (took 0.1s)
[22/50] Running N=  359, theta_crit=0.5... mean=5.578ms (took 0.1s)
[23/50] Running N= 1291, theta_crit=0.5... mean=7.496ms (took 0.1s)
[24/50] Running N= 4641, theta_crit=0.5... mean=10.531ms (took 0.1s)
[25/50] Skipping N=16681, theta_crit=0.5
[26/50] Skipping N=59948, theta_crit=0.5
[27/50] Skipping N=215443, theta_crit=0.5
[28/50] Skipping N=774263, theta_crit=0.5
[29/50] Skipping N=2782559, theta_crit=0.5
[30/50] Skipping N=10000000, theta_crit=0.5
[31/50] Running N=  100, theta_crit=0.7... mean=4.028ms (took 0.1s)
[32/50] Running N=  359, theta_crit=0.7... mean=5.613ms (took 0.1s)
[33/50] Running N= 1291, theta_crit=0.7... mean=7.597ms (took 0.1s)
[34/50] Running N= 4641, theta_crit=0.7... mean=10.203ms (took 0.1s)
[35/50] Running N=16681, theta_crit=0.7... mean=15.453ms (took 0.3s)
[36/50] Skipping N=59948, theta_crit=0.7
[37/50] Skipping N=215443, theta_crit=0.7
[38/50] Skipping N=774263, theta_crit=0.7
[39/50] Skipping N=2782559, theta_crit=0.7
[40/50] Skipping N=10000000, theta_crit=0.7
[41/50] Running N=  100, theta_crit=0.9... mean=3.846ms (took 0.1s)
[42/50] Running N=  359, theta_crit=0.9... mean=5.625ms (took 0.1s)
[43/50] Running N= 1291, theta_crit=0.9... mean=7.557ms (took 0.1s)
[44/50] Running N= 4641, theta_crit=0.9... mean=10.276ms (took 0.1s)
[45/50] Running N=16681, theta_crit=0.9... mean=13.754ms (took 0.3s)
[46/50] Skipping N=59948, theta_crit=0.9
[47/50] Skipping N=215443, theta_crit=0.9
[48/50] Skipping N=774263, theta_crit=0.9
[49/50] Skipping N=2782559, theta_crit=0.9
[50/50] Skipping N=10000000, theta_crit=0.9

Plot the performance benchmarks for all implementations

278 dump_folder = "_to_trash"
279
280 import os
281
282 # Create the dump directory if it does not exist
283 if shamrock.sys.world_rank() == 0:
284     os.makedirs(dump_folder, exist_ok=True)
285
286 ref_key = "reference ordered=False"
287 largest_refalg_value = np.nanmax(results[ref_key]["results_min"])
288
289 i = 0
290 # iterate over the results
291 for k, v in results.items():
292
293     # Get the results for this algorithm
294     particle_counts = v["particle_counts"]
295     theta_crits = v["theta_crits"]
296     results_min = v["results_min"]
297     results_max_mem_delta = v["results_max_mem_delta"]
298
299     # Get reference algorithm results for comparison
300     reference_min = results[ref_key]["results_min"]
301
302     # Create and display the plot
303     fig, ax = create_checkerboard_plot(
304         particle_counts,
305         theta_crits,
306         results_min,
307         compression_level,
308         v["name"],
309         largest_refalg_value,
310         reference_min,
311         results_max_mem_delta,
312     )
313
314     plt.savefig(f"{dump_folder}/benchmark-dtt-performance-{i}.pdf")
315     i += 1
316
317 plt.show()
  • Dual Tree Traversal Performance (Colors: Relative to Reference, Text: Absolute Time in ms) compression level = 4 algorithm = reference ordered=True
  • Dual Tree Traversal Performance (Colors: Relative to Reference, Text: Absolute Time in ms) compression level = 4 algorithm = parallel_select ordered=True
  • Dual Tree Traversal Performance (Colors: Relative to Reference, Text: Absolute Time in ms) compression level = 4 algorithm = scan_multipass ordered=True
  • Dual Tree Traversal Performance (Colors: Relative to Reference, Text: Absolute Time in ms) compression level = 4 algorithm = reference ordered=False
  • Dual Tree Traversal Performance (Colors: Relative to Reference, Text: Absolute Time in ms) compression level = 4 algorithm = parallel_select ordered=False
  • Dual Tree Traversal Performance (Colors: Relative to Reference, Text: Absolute Time in ms) compression level = 4 algorithm = scan_multipass ordered=False

Total running time of the script: (0 minutes 52.370 seconds)

Estimated memory usage: 120 MB

Gallery generated by Sphinx-Gallery