FMM math demo#

This example shows how to use the FMM maths to compute the force between two points

As always, we start by importing the necessary libraries

10 import matplotlib
11 import matplotlib.pyplot as plt
12 import numpy as np
13 from mpl_toolkits.mplot3d.art3d import Line3DCollection, Poly3DCollection
14
15 import shamrock

Utilities#

You can ignore this first block, it just contains some utility functions to draw the AABB and the arrows We only defines the function draw_aabb and draw_arrow, which are used to draw the AABB and the arrows in the plots and the function draw_box_pair, which is used to draw the box pair with all the vectors needed to compute the FMM force

Click here to expand the utility code
 32 def draw_aabb(ax, aabb, color, alpha):
 33     """
 34     Draw a 3D AABB in matplotlib
 35
 36     Parameters
 37     ----------
 38     ax : matplotlib.Axes3D
 39         The axis to draw the AABB on
 40     aabb : shamrock.math.AABB_f64_3
 41         The AABB to draw
 42     color : str
 43         The color of the AABB
 44     alpha : float
 45         The transparency of the AABB
 46     """
 47     xmin, ymin, zmin = aabb.lower
 48     xmax, ymax, zmax = aabb.upper
 49
 50     points = [
 51         aabb.lower,
 52         (aabb.lower[0], aabb.lower[1], aabb.upper[2]),
 53         (aabb.lower[0], aabb.upper[1], aabb.lower[2]),
 54         (aabb.lower[0], aabb.upper[1], aabb.upper[2]),
 55         (aabb.upper[0], aabb.lower[1], aabb.lower[2]),
 56         (aabb.upper[0], aabb.lower[1], aabb.upper[2]),
 57         (aabb.upper[0], aabb.upper[1], aabb.lower[2]),
 58         aabb.upper,
 59     ]
 60
 61     faces = [
 62         [points[0], points[1], points[3], points[2]],
 63         [points[4], points[5], points[7], points[6]],
 64         [points[0], points[1], points[5], points[4]],
 65         [points[2], points[3], points[7], points[6]],
 66         [points[0], points[2], points[6], points[4]],
 67         [points[1], points[3], points[7], points[5]],
 68     ]
 69
 70     edges = [
 71         [points[0], points[1]],
 72         [points[0], points[2]],
 73         [points[0], points[4]],
 74         [points[1], points[3]],
 75         [points[1], points[5]],
 76         [points[2], points[3]],
 77         [points[2], points[6]],
 78         [points[3], points[7]],
 79         [points[4], points[5]],
 80         [points[4], points[6]],
 81         [points[5], points[7]],
 82         [points[6], points[7]],
 83     ]
 84
 85     collection = Poly3DCollection(faces, alpha=alpha, color=color)
 86     ax.add_collection3d(collection)
 87
 88     edge_collection = Line3DCollection(edges, color="k", alpha=alpha)
 89     ax.add_collection3d(edge_collection)
 90
 91
 92 def draw_arrow(ax, p1, p2, color, label, arr_scale=0.1):
 93     length = np.linalg.norm(np.array(p2) - np.array(p1))
 94     arrow_length_ratio = arr_scale / length
 95     ax.quiver(
 96         p1[0],
 97         p1[1],
 98         p1[2],
 99         p2[0] - p1[0],
100         p2[1] - p1[1],
101         p2[2] - p1[2],
102         color=color,
103         label=label,
104         arrow_length_ratio=arrow_length_ratio,
105     )

FMM force computation#

Let’s start by assuming that we have two particles at positions \(\mathbf{x}_i\) and \(\mathbf{x}_j\) contained in two boxes (\(A\) and \(B\)) whose centers are at positions \(\mathbf{s}_a\) and \(\mathbf{s}_b\) respectively. The positions of the particles relative to their respective boxes are then:

\[\begin{split}\mathbf{a}_i = \mathbf{x}_i - \mathbf{s}_a \\ \mathbf{b}_j = \mathbf{x}_j - \mathbf{s}_b\end{split}\]

and the distance between the centers of the boxes is:

\[\mathbf{r} = \mathbf{s}_b - \mathbf{s}_a\]

This implies that the distance between the two particles is:

\[\mathbf{x}_j - \mathbf{x}_i = \mathbf{r} + \mathbf{b}_j - \mathbf{a}_i\]

If we denote the Green function for an inverse distance \(G(\mathbf{x}) = 1 / \vert\vert\mathbf{x}\vert\vert\), then the potential exerted onto particle \(i\) is:

\[\begin{split}\Phi_i = \Phi (\mathbf{x}_i) &= \int - \frac{\mathcal{G} \rho(\mathbf{x}_j)}{\vert\vert\mathbf{x}_i - \mathbf{x}_j\vert\vert} d\mathbf{x}_j \\ &= - \mathcal{G} \int \rho(\mathbf{x}_j) G(\mathbf{x}_j - \mathbf{x}_i) d\mathbf{x}_j\end{split}\]

and the force exerted onto particle \(i\) is:

\[\begin{split}\mathbf{f}_i = -\nabla_i \Phi (\mathbf{x}_i) &= \int - \nabla_i \frac{\mathcal{G} \rho(\mathbf{x}_j)}{\vert\vert\mathbf{x}_i - \mathbf{x}_j\vert\vert} d\mathbf{x}_j \\ &= \mathcal{G} \int \rho(\mathbf{x}_j) \nabla_i G(\mathbf{x}_j - \mathbf{x}_i) d\mathbf{x}_j \\ &= -\mathcal{G} \int \rho(\mathbf{x}_j) \nabla_j G(\mathbf{x}_j - \mathbf{x}_i) d\mathbf{x}_j\end{split}\]

Now let’s expand the green function in a Taylor series to order \(p\).

\[\begin{split}G(\mathbf{x}_j - \mathbf{x}_i) &= G(\mathbf{r} + \mathbf{b}_j - \mathbf{a}_i) \\ &= \sum_{k = 0}^p \frac{(-1)^k}{k!} \mathbf{a}_i^{(k)} \cdot \sum_{n=0}^{p-k} \frac{1}{n!} D_{n+k} \cdot \mathbf{b}_j^{(n)}\end{split}\]

where \(D_{n} = \nabla^{(n)}_r G(\mathbf{r})\) is the n-th order derivative of the Green function and the operator \(\mathbf{a}_i^{(k)}\) is the tensor product of \(k\) \(\mathbf{a}_i\) vectors.

Similarly the gradient of the green function is:

\[\begin{split}\nabla_j G(\mathbf{x}_j - \mathbf{x}_i) &= \nabla_r G(\mathbf{r} + \mathbf{b}_j - \mathbf{a}_i) \\ &= \sum_{k = 0}^p \frac{(-1)^k}{k!} \mathbf{a}_i^{(k)} \cdot \sum_{n=0}^{p-k} \frac{1}{n!} D_{n+k+1} \cdot \mathbf{b}_j^{(n)}\end{split}\]

Now we can plug that back into the expression for the force & potential:

\[\begin{split}\Phi_i &= - \mathcal{G} \int \rho(\mathbf{x}_j) G(\mathbf{x}_j - \mathbf{x}_i) d\mathbf{x}_j \\ &= - \mathcal{G} \sum_{k = 0}^p \frac{1}{k!} \mathbf{a}_i^{(k)} \cdot \underbrace{(-1)^k \sum_{n=0}^{p-k} \frac{1}{n!} D_{n+k} \cdot \underbrace{\int \rho(\mathbf{x}_j) \mathbf{b}_j^{(n)} d\mathbf{x}_j}_{Q_n^B}}_{M_{p,k}} \\\end{split}\]
\[\begin{split}\mathbf{f}_i &= -\mathcal{G} \int \rho(\mathbf{x}_j) \nabla_j G(\mathbf{x}_j - \mathbf{x}_i) d\mathbf{x}_j \\ &= -\mathcal{G} \sum_{k = 0}^p \frac{1}{k!} \mathbf{a}_i^{(k)} \cdot \underbrace{(-1)^k \sum_{n=0}^{p-k} \frac{1}{n!} D_{n+k+1} \cdot \underbrace{\int \rho(\mathbf{x}_j)\mathbf{b}_j^{(n)} d\mathbf{x}_j}_{Q_n^B}}_{dM_{p,k} = M_{p+1,k+1}}\end{split}\]

As one can tell sadly the two expressions while similar do not share the same terms.

I will not go in this rabit hole of using the same expansion for both now but the idea is to use the primitive of the force which is the same expansion as the force but with the primitive of \(\mathbf{a}_i^{(k)}\) instead.

\[\Phi_i = - \int \mathbf{f}_i = -\mathcal{G} \sum_{k = 0}^p \frac{1}{k!} \int\mathbf{a}_i^{(k)} \cdot {M_{p+1,k+1}}\]

Mass moments#

def plot_mass_moment_case(s_B,box_B_size,x_j):
204 def plot_mass_moment_case(s_B, box_B_size, x_j):
205     box_B = shamrock.math.AABB_f64_3(
206         (
207             s_B[0] - box_B_size / 2,
208             s_B[1] - box_B_size / 2,
209             s_B[2] - box_B_size / 2,
210         ),
211         (
212             s_B[0] + box_B_size / 2,
213             s_B[1] + box_B_size / 2,
214             s_B[2] + box_B_size / 2,
215         ),
216     )
217
218     fig = plt.figure()
219     ax = fig.add_subplot(111, projection="3d")
220
221     draw_arrow(ax, s_B, x_j, "black", "$b_j = x_j - s_B$")
222
223     ax.scatter(s_B[0], s_B[1], s_B[2], color="black", label="s_B")
224
225     ax.scatter(x_j[0], x_j[1], x_j[2], color="red", label="$x_j$")
226
227     draw_aabb(ax, box_B, "blue", 0.2)
228
229     center_view = (0.0, 0.0, 0.0)
230     view_size = 2.0
231     ax.set_xlim(center_view[0] - view_size / 2, center_view[0] + view_size / 2)
232     ax.set_ylim(center_view[1] - view_size / 2, center_view[1] + view_size / 2)
233     ax.set_zlim(center_view[2] - view_size / 2, center_view[2] + view_size / 2)
234     ax.set_xlabel("X")
235     ax.set_ylabel("Y")
236     ax.set_zlabel("Z")
237     return ax

Let’s start with the following

248 s_B = (0, 0, 0)
249 box_B_size = 1
250
251 x_j = (0.2, 0.2, 0.2)
252 m_j = 1
253
254 b_j = (x_j[0] - s_B[0], x_j[1] - s_B[1], x_j[2] - s_B[2])
255
256 ax = plot_mass_moment_case(s_B, box_B_size, x_j)
257 plt.title("Mass moment illustration")
258 plt.legend(loc="center left", bbox_to_anchor=(-0.3, 0.5))
259 plt.show()
Mass moment illustration

Here the mass moment of a set of particles (here only one) of mass \(m_j\) is

\[\begin{split}{Q_n^B} &= \int \rho(\mathbf{x}_j) \mathbf{b}_j^{(n)} d\mathbf{x}_j\\ &= \sum_j m_j \mathbf{b}_j^{(n)}\end{split}\]

In Shamrock python bindings the function

shamrock.math.SymTensorCollection_f64_<low order>_<high order>.from_vec(b_j)

will return the collection of symetrical tensors \(\mathbf{b}_j^{(n)}\) for n in between <low order> and <high order> Here are the values of the tensors \({Q_n^B}\) from order 0 up to 5 using shamrock symmetrical tensor collections

Q_n_B = SymTensorCollection_f64_0_5(
  t0=1,
  t1=SymTensor3d_1(v_0=0.2, v_1=0.2, v_2=0.2),
  t2=SymTensor3d_2(v_00=0.04000000000000001, v_01=0.04000000000000001, v_02=0.04000000000000001, v_11=0.04000000000000001, v_12=0.04000000000000001, v_22=0.04000000000000001),
  t3=SymTensor3d_3(v_000=0.008000000000000002, v_001=0.008000000000000002, v_002=0.008000000000000002, v_011=0.008000000000000002, v_012=0.008000000000000002, v_022=0.008000000000000002, v_111=0.008000000000000002, v_112=0.008000000000000002, v_122=0.008000000000000002, v_222=0.008000000000000002),
  t4=SymTensor3d_4(v_0000=0.0016000000000000005, v_0001=0.0016000000000000005, v_0002=0.0016000000000000005, v_0011=0.0016000000000000005, v_0012=0.0016000000000000005, v_0022=0.0016000000000000005, v_0111=0.0016000000000000005, v_0112=0.0016000000000000005, v_0122=0.0016000000000000005, v_0222=0.0016000000000000005, v_1111=0.0016000000000000005, v_1112=0.0016000000000000005, v_1122=0.0016000000000000005, v_1222=0.0016000000000000005, v_2222=0.0016000000000000005),
  t5=SymTensor3d_5(v_00000=0.00032000000000000013, v_00001=0.00032000000000000013, v_00002=0.00032000000000000013, v_00011=0.00032000000000000013, v_00012=0.00032000000000000013, v_00022=0.00032000000000000013, v_00111=0.00032000000000000013, v_00112=0.00032000000000000013, v_00122=0.00032000000000000013, v_00222=0.00032000000000000013, v_01111=0.00032000000000000013, v_01112=0.00032000000000000013, v_01122=0.00032000000000000013, v_01222=0.00032000000000000013, v_02222=0.00032000000000000013, v_11111=0.00032000000000000013, v_11112=0.00032000000000000013, v_11122=0.00032000000000000013, v_11222=0.00032000000000000013, v_12222=0.00032000000000000013, v_22222=0.00032000000000000013)
)

Now if we take a displacment that is only along the x axis we get null components in the Q_n_B if for cases that do not only exhibit x

288 s_B = (0, 0, 0)
289 box_B_size = 1
290
291 x_j = (0.5, 0.0, 0.0)
292 m_j = 1
293
294 b_j = (x_j[0] - s_B[0], x_j[1] - s_B[1], x_j[2] - s_B[2])
295
296 ax = plot_mass_moment_case(s_B, box_B_size, x_j)
297 plt.title("Mass moment illustration")
298 plt.legend(loc="center left", bbox_to_anchor=(-0.3, 0.5))
299 plt.show()
300
301 Q_n_B = shamrock.math.SymTensorCollection_f64_0_5.from_vec(b_j)
302 Q_n_B *= m_j
303
304 print("Q_n_B =", Q_n_B)
Mass moment illustration
Q_n_B = SymTensorCollection_f64_0_5(
  t0=1,
  t1=SymTensor3d_1(v_0=0.5, v_1=0, v_2=0),
  t2=SymTensor3d_2(v_00=0.25, v_01=0, v_02=0, v_11=0, v_12=0, v_22=0),
  t3=SymTensor3d_3(v_000=0.125, v_001=0, v_002=0, v_011=0, v_012=0, v_022=0, v_111=0, v_112=0, v_122=0, v_222=0),
  t4=SymTensor3d_4(v_0000=0.0625, v_0001=0, v_0002=0, v_0011=0, v_0012=0, v_0022=0, v_0111=0, v_0112=0, v_0122=0, v_0222=0, v_1111=0, v_1112=0, v_1122=0, v_1222=0, v_2222=0),
  t5=SymTensor3d_5(v_00000=0.03125, v_00001=0, v_00002=0, v_00011=0, v_00012=0, v_00022=0, v_00111=0, v_00112=0, v_00122=0, v_00222=0, v_01111=0, v_01112=0, v_01122=0, v_01222=0, v_02222=0, v_11111=0, v_11112=0, v_11122=0, v_11222=0, v_12222=0, v_22222=0)
)

Gravitational moments#

def plot_mass_moment_case(s_B,box_B_size,x_j):
319 def plot_grav_moment_case(s_A, box_A_size, s_B, box_B_size, x_j):
320     box_A = shamrock.math.AABB_f64_3(
321         (
322             s_A[0] - box_A_size / 2,
323             s_A[1] - box_A_size / 2,
324             s_A[2] - box_A_size / 2,
325         ),
326         (
327             s_A[0] + box_A_size / 2,
328             s_A[1] + box_A_size / 2,
329             s_A[2] + box_A_size / 2,
330         ),
331     )
332
333     box_B = shamrock.math.AABB_f64_3(
334         (
335             s_B[0] - box_B_size / 2,
336             s_B[1] - box_B_size / 2,
337             s_B[2] - box_B_size / 2,
338         ),
339         (
340             s_B[0] + box_B_size / 2,
341             s_B[1] + box_B_size / 2,
342             s_B[2] + box_B_size / 2,
343         ),
344     )
345
346     fig = plt.figure()
347     ax = fig.add_subplot(111, projection="3d")
348
349     draw_arrow(ax, s_B, x_j, "black", "$b_j = x_j - s_B$")
350
351     draw_arrow(ax, s_A, s_B, "purple", "$r = s_B - s_A$")
352
353     ax.scatter(s_A[0], s_A[1], s_A[2], color="black", label="s_A")
354
355     ax.scatter(s_B[0], s_B[1], s_B[2], color="green", label="s_B")
356
357     ax.scatter(x_j[0], x_j[1], x_j[2], color="red", label="$x_j$")
358
359     draw_aabb(ax, box_A, "blue", 0.1)
360     draw_aabb(ax, box_B, "red", 0.1)
361
362     center_view = (0.5, 0.0, 0.0)
363     view_size = 2.0
364     ax.set_xlim(center_view[0] - view_size / 2, center_view[0] + view_size / 2)
365     ax.set_ylim(center_view[1] - view_size / 2, center_view[1] + view_size / 2)
366     ax.set_zlim(center_view[2] - view_size / 2, center_view[2] + view_size / 2)
367     ax.set_xlabel("X")
368     ax.set_ylabel("Y")
369     ax.set_zlabel("Z")
370     return ax

Let’s now show the example of a gravitational moment, for the following case

380 s_B = (0, 0, 0)
381 s_A = (1, 0, 0)
382
383 box_B_size = 0.5
384 box_A_size = 0.5
385
386 x_j = (0.2, 0.2, 0.0)
387 m_j = 1
388
389 b_j = (x_j[0] - s_B[0], x_j[1] - s_B[1], x_j[2] - s_B[2])
390 r = (s_B[0] - s_A[0], s_B[1] - s_A[1], s_B[2] - s_A[2])
391
392 ax = plot_grav_moment_case(s_A, box_A_size, s_B, box_B_size, x_j)
393 plt.title("Grav moment illustration")
394 plt.legend(loc="center left", bbox_to_anchor=(-0.3, 0.5))
395 plt.show()
Grav moment illustration

The mass moment \({Q_n^B}\) is

Q_n_B = SymTensorCollection_f64_0_4(
  t0=1,
  t1=SymTensor3d_1(v_0=0.2, v_1=0.2, v_2=0),
  t2=SymTensor3d_2(v_00=0.04000000000000001, v_01=0.04000000000000001, v_02=0, v_11=0.04000000000000001, v_12=0, v_22=0),
  t3=SymTensor3d_3(v_000=0.008000000000000002, v_001=0.008000000000000002, v_002=0, v_011=0.008000000000000002, v_012=0, v_022=0, v_111=0.008000000000000002, v_112=0, v_122=0, v_222=0),
  t4=SymTensor3d_4(v_0000=0.0016000000000000005, v_0001=0.0016000000000000005, v_0002=0, v_0011=0.0016000000000000005, v_0012=0, v_0022=0, v_0111=0.0016000000000000005, v_0112=0, v_0122=0, v_0222=0, v_1111=0.0016000000000000005, v_1112=0, v_1122=0, v_1222=0, v_2222=0)
)

The green function n’th gradients \(D_{n+k+1}\) are

D_n = SymTensorCollection_f64_1_5(
  t1=SymTensor3d_1(v_0=1, v_1=-0, v_2=-0),
  t2=SymTensor3d_2(v_00=2, v_01=-0, v_02=-0, v_11=-1, v_12=0, v_22=-1),
  t3=SymTensor3d_3(v_000=6, v_001=0, v_002=0, v_011=-3, v_012=0, v_022=-3, v_111=0, v_112=0, v_122=0, v_222=0),
  t4=SymTensor3d_4(v_0000=24, v_0001=0, v_0002=0, v_0011=-12, v_0012=0, v_0022=-12, v_0111=0, v_0112=0, v_0122=0, v_0222=0, v_1111=9, v_1112=0, v_1122=3, v_1222=0, v_2222=9),
  t5=SymTensor3d_5(v_00000=120, v_00001=-0, v_00002=-0, v_00011=-60, v_00012=0, v_00022=-60, v_00111=0, v_00112=0, v_00122=0, v_00222=0, v_01111=45, v_01112=-0, v_01122=15, v_01222=-0, v_02222=45, v_11111=0, v_11112=-0, v_11122=0, v_11222=0, v_12222=-0, v_22222=0)
)

And finally the gravitational moments \(dM_{p,k}\) are

410 dM_k = shamrock.phys.get_dM_mat_5(D_n, Q_n_B)
411 print("dM_k =", dM_k)
dM_k = SymTensorCollection_f64_1_5(
  t1=SymTensor3d_1(v_0=1.431, v_1=-0.3600000000000001, v_2=0),
  t2=SymTensor3d_2(v_00=-3.3600000000000003, v_01=1.26, v_02=0, v_11=1.56, v_12=-0, v_22=1.8000000000000003),
  t3=SymTensor3d_3(v_000=12, v_001=-4.800000000000001, v_002=0, v_011=-5.7, v_012=0, v_022=-6.300000000000001, v_111=3.6000000000000005, v_112=0, v_122=1.2000000000000002, v_222=0),
  t4=SymTensor3d_4(v_0000=-48, v_0001=12, v_0002=-0, v_0011=24, v_0012=-0, v_0022=24, v_0111=-9, v_0112=-0, v_0122=-3, v_0222=-0, v_1111=-18, v_1112=-0, v_1122=-6, v_1222=-0, v_2222=-18),
  t5=SymTensor3d_5(v_00000=120, v_00001=-0, v_00002=-0, v_00011=-60, v_00012=0, v_00022=-60, v_00111=0, v_00112=0, v_00122=0, v_00222=0, v_01111=45, v_01112=-0, v_01122=15, v_01222=-0, v_02222=45, v_11111=0, v_11112=-0, v_11122=0, v_11222=0, v_12222=-0, v_22222=0)
)

From Gravitational moments to force#

def plot_fmm_case(s_A,box_A_size,x_i,s_B,box_B_size,x_j, f_i_fmm, f_i_exact):
425 def plot_fmm_case(s_A, box_A_size, x_i, s_B, box_B_size, x_j, f_i_fmm, f_i_exact, fscale_fact):
426     box_A = shamrock.math.AABB_f64_3(
427         (
428             s_A[0] - box_A_size / 2,
429             s_A[1] - box_A_size / 2,
430             s_A[2] - box_A_size / 2,
431         ),
432         (
433             s_A[0] + box_A_size / 2,
434             s_A[1] + box_A_size / 2,
435             s_A[2] + box_A_size / 2,
436         ),
437     )
438
439     box_B = shamrock.math.AABB_f64_3(
440         (
441             s_B[0] - box_B_size / 2,
442             s_B[1] - box_B_size / 2,
443             s_B[2] - box_B_size / 2,
444         ),
445         (
446             s_B[0] + box_B_size / 2,
447             s_B[1] + box_B_size / 2,
448             s_B[2] + box_B_size / 2,
449         ),
450     )
451
452     fig = plt.figure()
453     ax = fig.add_subplot(111, projection="3d")
454
455     draw_arrow(ax, s_B, x_j, "black", "$b_j = x_j - s_B$")
456     draw_arrow(ax, s_A, x_i, "blue", "$a_i = x_i - s_A$")
457
458     draw_arrow(ax, s_A, s_B, "purple", "$r = s_B - s_A$")
459
460     ax.scatter(s_A[0], s_A[1], s_A[2], color="black", label="s_A")
461
462     ax.scatter(s_B[0], s_B[1], s_B[2], color="green", label="s_B")
463
464     ax.scatter(x_i[0], x_i[1], x_i[2], color="orange", label="$x_i$")
465
466     ax.scatter(x_j[0], x_j[1], x_j[2], color="red", label="$x_j$")
467
468     draw_arrow(ax, x_i, x_i + force_i * fscale_fact, "green", "$f_i$")
469     draw_arrow(ax, x_i, x_i + force_i_exact * fscale_fact, "red", "$f_i$ (exact)")
470
471     abs_error = np.linalg.norm(force_i - force_i_exact)
472     rel_error = abs_error / np.linalg.norm(force_i_exact)
473
474     draw_aabb(ax, box_A, "blue", 0.1)
475     draw_aabb(ax, box_B, "red", 0.1)
476
477     center_view = (0.5, 0.0, 0.0)
478     view_size = 2.0
479     ax.set_xlim(center_view[0] - view_size / 2, center_view[0] + view_size / 2)
480     ax.set_ylim(center_view[1] - view_size / 2, center_view[1] + view_size / 2)
481     ax.set_zlim(center_view[2] - view_size / 2, center_view[2] + view_size / 2)
482     ax.set_xlabel("X")
483     ax.set_ylabel("Y")
484     ax.set_zlabel("Z")
485
486     return ax, rel_error, abs_error

Now let’s put everything together to get a FMM force We start with the following parameters (see figure below for the representation)

499 s_B = (0, 0, 0)
500 s_A = (1, 0, 0)
501
502 box_B_size = 0.5
503 box_A_size = 0.5
504
505 x_j = (0.2, 0.2, 0.0)
506 x_i = (1.2, 0.2, 0.0)
507 m_j = 1
508 m_i = 1
509
510 b_j = (x_j[0] - s_B[0], x_j[1] - s_B[1], x_j[2] - s_B[2])
511 r = (s_B[0] - s_A[0], s_B[1] - s_A[1], s_B[2] - s_A[2])
512 a_i = (x_i[0] - s_A[0], x_i[1] - s_A[1], x_i[2] - s_A[2])
Q_n_B = SymTensorCollection_f64_0_4(
  t0=1,
  t1=SymTensor3d_1(v_0=0.2, v_1=0.2, v_2=0),
  t2=SymTensor3d_2(v_00=0.04000000000000001, v_01=0.04000000000000001, v_02=0, v_11=0.04000000000000001, v_12=0, v_22=0),
  t3=SymTensor3d_3(v_000=0.008000000000000002, v_001=0.008000000000000002, v_002=0, v_011=0.008000000000000002, v_012=0, v_022=0, v_111=0.008000000000000002, v_112=0, v_122=0, v_222=0),
  t4=SymTensor3d_4(v_0000=0.0016000000000000005, v_0001=0.0016000000000000005, v_0002=0, v_0011=0.0016000000000000005, v_0012=0, v_0022=0, v_0111=0.0016000000000000005, v_0112=0, v_0122=0, v_0222=0, v_1111=0.0016000000000000005, v_1112=0, v_1122=0, v_1222=0, v_2222=0)
)
D_n = SymTensorCollection_f64_1_5(
  t1=SymTensor3d_1(v_0=1, v_1=-0, v_2=-0),
  t2=SymTensor3d_2(v_00=2, v_01=-0, v_02=-0, v_11=-1, v_12=0, v_22=-1),
  t3=SymTensor3d_3(v_000=6, v_001=0, v_002=0, v_011=-3, v_012=0, v_022=-3, v_111=0, v_112=0, v_122=0, v_222=0),
  t4=SymTensor3d_4(v_0000=24, v_0001=0, v_0002=0, v_0011=-12, v_0012=0, v_0022=-12, v_0111=0, v_0112=0, v_0122=0, v_0222=0, v_1111=9, v_1112=0, v_1122=3, v_1222=0, v_2222=9),
  t5=SymTensor3d_5(v_00000=120, v_00001=-0, v_00002=-0, v_00011=-60, v_00012=0, v_00022=-60, v_00111=0, v_00112=0, v_00122=0, v_00222=0, v_01111=45, v_01112=-0, v_01122=15, v_01222=-0, v_02222=45, v_11111=0, v_11112=-0, v_11122=0, v_11222=0, v_12222=-0, v_22222=0)
)
524 dM_k = shamrock.phys.get_dM_mat_5(D_n, Q_n_B)
525 print("dM_k =", dM_k)
dM_k = SymTensorCollection_f64_1_5(
  t1=SymTensor3d_1(v_0=1.431, v_1=-0.3600000000000001, v_2=0),
  t2=SymTensor3d_2(v_00=-3.3600000000000003, v_01=1.26, v_02=0, v_11=1.56, v_12=-0, v_22=1.8000000000000003),
  t3=SymTensor3d_3(v_000=12, v_001=-4.800000000000001, v_002=0, v_011=-5.7, v_012=0, v_022=-6.300000000000001, v_111=3.6000000000000005, v_112=0, v_122=1.2000000000000002, v_222=0),
  t4=SymTensor3d_4(v_0000=-48, v_0001=12, v_0002=-0, v_0011=24, v_0012=-0, v_0022=24, v_0111=-9, v_0112=-0, v_0122=-3, v_0222=-0, v_1111=-18, v_1112=-0, v_1122=-6, v_1222=-0, v_2222=-18),
  t5=SymTensor3d_5(v_00000=120, v_00001=-0, v_00002=-0, v_00011=-60, v_00012=0, v_00022=-60, v_00111=0, v_00112=0, v_00122=0, v_00222=0, v_01111=45, v_01112=-0, v_01122=15, v_01222=-0, v_02222=45, v_11111=0, v_11112=-0, v_11122=0, v_11222=0, v_12222=-0, v_22222=0)
)
a_k = SymTensorCollection_f64_0_4(
  t0=1,
  t1=SymTensor3d_1(v_0=0.19999999999999996, v_1=0.2, v_2=0),
  t2=SymTensor3d_2(v_00=0.03999999999999998, v_01=0.039999999999999994, v_02=0, v_11=0.04000000000000001, v_12=0, v_22=0),
  t3=SymTensor3d_3(v_000=0.007999999999999995, v_001=0.007999999999999997, v_002=0, v_011=0.008, v_012=0, v_022=0, v_111=0.008000000000000002, v_112=0, v_122=0, v_222=0),
  t4=SymTensor3d_4(v_0000=0.0015999999999999986, v_0001=0.001599999999999999, v_0002=0, v_0011=0.0015999999999999996, v_0012=0, v_0022=0, v_0111=0.0016, v_0112=0, v_0122=0, v_0222=0, v_1111=0.0016000000000000005, v_1112=0, v_1122=0, v_1222=0, v_2222=0)
)
532 result = shamrock.phys.contract_grav_moment_to_force_5(a_k, dM_k)
533 Gconst = 1  # let's just set the grav constant to 1
534 force_i = -Gconst * np.array(result)
535 print("force_i =", force_i)
force_i = [-1.00000000e+00  1.46584134e-16 -0.00000000e+00]

Now we just need the analytical force to compare

540 def analytic_force_i(x_i, x_j, Gconst):
541     force_i_direct = (x_j[0] - x_i[0], x_j[1] - x_i[1], x_j[2] - x_i[2])
542     force_i_direct /= np.linalg.norm(force_i_direct) ** 3
543     force_i_direct *= m_i
544     return force_i_direct
545
546
547 force_i_exact = analytic_force_i(x_i, x_j, Gconst)
548 print("force_i_exact =", force_i_exact)
force_i_exact = [-1.  0.  0.]

This yields the following case

552 ax, rel_error, abs_error = plot_fmm_case(
553     s_A, box_A_size, x_i, s_B, box_B_size, x_j, force_i, force_i_exact, 0.5
554 )
555
556 plt.title(f"FMM, rel error={rel_error}")
557 plt.legend(loc="center left", bbox_to_anchor=(-0.3, 0.5))
558 plt.show()
559
560 print("force_i =", force_i)
561 print("force_i_exact =", force_i_exact)
562 print("abs error =", abs_error)
563 print("rel error =", rel_error)
FMM, rel error=1.838827341066391e-16
force_i = [-1.00000000e+00  1.46584134e-16 -0.00000000e+00]
force_i_exact = [-1.  0.  0.]
abs error = 1.838827341066391e-16
rel error = 1.838827341066391e-16

And yeah the error is insanelly low, but it is the special case where \(a_i = b_j\). Anyway now let’s wrap all of that mess into a function that does it all and see how the error changes depending on the configure and order of the expansion.

FMM in box#

The following is the function to do the same as above but for whatever order

576 def run_fmm(x_i, x_j, s_A, s_B, m_j, order, do_print):
577
578     b_j = (x_j[0] - s_B[0], x_j[1] - s_B[1], x_j[2] - s_B[2])
579     r = (s_B[0] - s_A[0], s_B[1] - s_A[1], s_B[2] - s_A[2])
580     a_i = (x_i[0] - s_A[0], x_i[1] - s_A[1], x_i[2] - s_A[2])
581
582     if do_print:
583         print("x_i =", x_i)
584         print("x_j =", x_j)
585         print("s_A =", s_A)
586         print("s_B =", s_B)
587         print("b_j =", b_j)
588         print("r =", r)
589         print("a_i =", a_i)
590
591     # compute the tensor product of the displacment
592     if order == 1:
593         Q_n_B = shamrock.math.SymTensorCollection_f64_0_0.from_vec(b_j)
594     elif order == 2:
595         Q_n_B = shamrock.math.SymTensorCollection_f64_0_1.from_vec(b_j)
596     elif order == 3:
597         Q_n_B = shamrock.math.SymTensorCollection_f64_0_2.from_vec(b_j)
598     elif order == 4:
599         Q_n_B = shamrock.math.SymTensorCollection_f64_0_3.from_vec(b_j)
600     elif order == 5:
601         Q_n_B = shamrock.math.SymTensorCollection_f64_0_4.from_vec(b_j)
602     else:
603         raise ValueError("Invalid order")
604
605     # multiply by mass to get the mass moment
606     Q_n_B *= m_j
607
608     if do_print:
609         print("Q_n_B =", Q_n_B)
610
611     # green function gradients
612     if order == 1:
613         D_n = shamrock.phys.green_func_grav_cartesian_1_1(r)
614     elif order == 2:
615         D_n = shamrock.phys.green_func_grav_cartesian_1_2(r)
616     elif order == 3:
617         D_n = shamrock.phys.green_func_grav_cartesian_1_3(r)
618     elif order == 4:
619         D_n = shamrock.phys.green_func_grav_cartesian_1_4(r)
620     elif order == 5:
621         D_n = shamrock.phys.green_func_grav_cartesian_1_5(r)
622     else:
623         raise ValueError("Invalid order")
624
625     if do_print:
626         print("D_n =", D_n)
627
628     if order == 1:
629         dM_k = shamrock.phys.get_dM_mat_1(D_n, Q_n_B)
630     elif order == 2:
631         dM_k = shamrock.phys.get_dM_mat_2(D_n, Q_n_B)
632     elif order == 3:
633         dM_k = shamrock.phys.get_dM_mat_3(D_n, Q_n_B)
634     elif order == 4:
635         dM_k = shamrock.phys.get_dM_mat_4(D_n, Q_n_B)
636     elif order == 5:
637         dM_k = shamrock.phys.get_dM_mat_5(D_n, Q_n_B)
638     else:
639         raise ValueError("Invalid order")
640
641     if do_print:
642         print("dM_k =", dM_k)
643
644     if order == 1:
645         a_k = shamrock.math.SymTensorCollection_f64_0_0.from_vec(a_i)
646     elif order == 2:
647         a_k = shamrock.math.SymTensorCollection_f64_0_1.from_vec(a_i)
648     elif order == 3:
649         a_k = shamrock.math.SymTensorCollection_f64_0_2.from_vec(a_i)
650     elif order == 4:
651         a_k = shamrock.math.SymTensorCollection_f64_0_3.from_vec(a_i)
652     elif order == 5:
653         a_k = shamrock.math.SymTensorCollection_f64_0_4.from_vec(a_i)
654     else:
655         raise ValueError("Invalid order")
656
657     if do_print:
658         print("a_k =", a_k)
659
660     if order == 1:
661         result = shamrock.phys.contract_grav_moment_to_force_1(a_k, dM_k)
662     elif order == 2:
663         result = shamrock.phys.contract_grav_moment_to_force_2(a_k, dM_k)
664     elif order == 3:
665         result = shamrock.phys.contract_grav_moment_to_force_3(a_k, dM_k)
666     elif order == 4:
667         result = shamrock.phys.contract_grav_moment_to_force_4(a_k, dM_k)
668     elif order == 5:
669         result = shamrock.phys.contract_grav_moment_to_force_5(a_k, dM_k)
670     else:
671         raise ValueError("Invalid order")
672
673     Gconst = 1  # let's just set the grav constant to 1
674     force_i = -Gconst * np.array(result)
675     if do_print:
676         print("force_i =", force_i)
677
678     force_i_exact = analytic_force_i(x_i, x_j, Gconst)
679     if do_print:
680         print("force_i_exact =", force_i_exact)
681
682     b_A_size = np.linalg.norm(np.array(s_A) - np.array(x_i))
683     b_B_size = np.linalg.norm(np.array(s_B) - np.array(x_j))
684     b_dist = np.linalg.norm(np.array(s_A) - np.array(s_B))
685
686     angle = (b_A_size + b_B_size) / b_dist
687
688     if do_print:
689         print("b_A_size =", b_A_size)
690         print("b_B_size =", b_B_size)
691         print("b_dist =", b_dist)
692         print("angle =", angle)
693
694     return force_i, force_i_exact, angle

Let’s try with some new parameters

699 s_B = (0, 0, 0)
700 s_A = (1, 0, 0)
701
702 box_B_size = 0.5
703 box_A_size = 0.5
704
705 x_j = (0.2, 0.2, 0.0)
706 x_i = (1.2, 0.2, 0.2)
707 m_j = 1
708 m_i = 1
709
710 force_i, force_i_exact, angle = run_fmm(x_i, x_j, s_A, s_B, m_j, order=5, do_print=True)
711 ax, rel_error, abs_error = plot_fmm_case(
712     s_A, box_A_size, x_i, s_B, box_B_size, x_j, force_i, force_i_exact, 0.5
713 )
714
715 plt.title(f"FMM angle={angle:.5f} rel error={rel_error:.2e}")
716 plt.legend(loc="center left", bbox_to_anchor=(-0.3, 0.5))
717 plt.show()
718
719 print("force_i =", force_i)
720 print("force_i_exact =", force_i_exact)
721 print("abs error =", abs_error)
722 print("rel error =", rel_error)
FMM angle=0.62925 rel error=6.12e-04
x_i = (1.2, 0.2, 0.2)
x_j = (0.2, 0.2, 0.0)
s_A = (1, 0, 0)
s_B = (0, 0, 0)
b_j = (0.2, 0.2, 0.0)
r = (-1, 0, 0)
a_i = (0.19999999999999996, 0.2, 0.2)
Q_n_B = SymTensorCollection_f64_0_4(
  t0=1,
  t1=SymTensor3d_1(v_0=0.2, v_1=0.2, v_2=0),
  t2=SymTensor3d_2(v_00=0.04000000000000001, v_01=0.04000000000000001, v_02=0, v_11=0.04000000000000001, v_12=0, v_22=0),
  t3=SymTensor3d_3(v_000=0.008000000000000002, v_001=0.008000000000000002, v_002=0, v_011=0.008000000000000002, v_012=0, v_022=0, v_111=0.008000000000000002, v_112=0, v_122=0, v_222=0),
  t4=SymTensor3d_4(v_0000=0.0016000000000000005, v_0001=0.0016000000000000005, v_0002=0, v_0011=0.0016000000000000005, v_0012=0, v_0022=0, v_0111=0.0016000000000000005, v_0112=0, v_0122=0, v_0222=0, v_1111=0.0016000000000000005, v_1112=0, v_1122=0, v_1222=0, v_2222=0)
)
D_n = SymTensorCollection_f64_1_5(
  t1=SymTensor3d_1(v_0=1, v_1=-0, v_2=-0),
  t2=SymTensor3d_2(v_00=2, v_01=-0, v_02=-0, v_11=-1, v_12=0, v_22=-1),
  t3=SymTensor3d_3(v_000=6, v_001=0, v_002=0, v_011=-3, v_012=0, v_022=-3, v_111=0, v_112=0, v_122=0, v_222=0),
  t4=SymTensor3d_4(v_0000=24, v_0001=0, v_0002=0, v_0011=-12, v_0012=0, v_0022=-12, v_0111=0, v_0112=0, v_0122=0, v_0222=0, v_1111=9, v_1112=0, v_1122=3, v_1222=0, v_2222=9),
  t5=SymTensor3d_5(v_00000=120, v_00001=-0, v_00002=-0, v_00011=-60, v_00012=0, v_00022=-60, v_00111=0, v_00112=0, v_00122=0, v_00222=0, v_01111=45, v_01112=-0, v_01122=15, v_01222=-0, v_02222=45, v_11111=0, v_11112=-0, v_11122=0, v_11222=0, v_12222=-0, v_22222=0)
)
dM_k = SymTensorCollection_f64_1_5(
  t1=SymTensor3d_1(v_0=1.431, v_1=-0.3600000000000001, v_2=0),
  t2=SymTensor3d_2(v_00=-3.3600000000000003, v_01=1.26, v_02=0, v_11=1.56, v_12=-0, v_22=1.8000000000000003),
  t3=SymTensor3d_3(v_000=12, v_001=-4.800000000000001, v_002=0, v_011=-5.7, v_012=0, v_022=-6.300000000000001, v_111=3.6000000000000005, v_112=0, v_122=1.2000000000000002, v_222=0),
  t4=SymTensor3d_4(v_0000=-48, v_0001=12, v_0002=-0, v_0011=24, v_0012=-0, v_0022=24, v_0111=-9, v_0112=-0, v_0122=-3, v_0222=-0, v_1111=-18, v_1112=-0, v_1122=-6, v_1222=-0, v_2222=-18),
  t5=SymTensor3d_5(v_00000=120, v_00001=-0, v_00002=-0, v_00011=-60, v_00012=0, v_00022=-60, v_00111=0, v_00112=0, v_00122=0, v_00222=0, v_01111=45, v_01112=-0, v_01122=15, v_01222=-0, v_02222=45, v_11111=0, v_11112=-0, v_11122=0, v_11222=0, v_12222=-0, v_22222=0)
)
a_k = SymTensorCollection_f64_0_4(
  t0=1,
  t1=SymTensor3d_1(v_0=0.19999999999999996, v_1=0.2, v_2=0.2),
  t2=SymTensor3d_2(v_00=0.03999999999999998, v_01=0.039999999999999994, v_02=0.039999999999999994, v_11=0.04000000000000001, v_12=0.04000000000000001, v_22=0.04000000000000001),
  t3=SymTensor3d_3(v_000=0.007999999999999995, v_001=0.007999999999999997, v_002=0.007999999999999997, v_011=0.008, v_012=0.008, v_022=0.008, v_111=0.008000000000000002, v_112=0.008000000000000002, v_122=0.008000000000000002, v_222=0.008000000000000002),
  t4=SymTensor3d_4(v_0000=0.0015999999999999986, v_0001=0.001599999999999999, v_0002=0.001599999999999999, v_0011=0.0015999999999999996, v_0012=0.0015999999999999996, v_0022=0.0015999999999999996, v_0111=0.0016, v_0112=0.0016, v_0122=0.0016, v_0222=0.0016, v_1111=0.0016000000000000005, v_1112=0.0016000000000000005, v_1122=0.0016000000000000005, v_1222=0.0016000000000000005, v_2222=0.0016000000000000005)
)
force_i = [-9.43000000e-01  1.31838984e-16 -1.88000000e-01]
force_i_exact = [-0.94286603  0.         -0.18857321]
b_A_size = 0.34641016151377546
b_B_size = 0.28284271247461906
b_dist = 1.0
angle = 0.6292528739883945
force_i = [-9.43000000e-01  1.31838984e-16 -1.88000000e-01]
force_i_exact = [-0.94286603  0.         -0.18857321]
abs error = 0.0005886534739763063
rel error = 0.0006121996129353586

Varying the order of the expansion#

729 s_B = (0, 0, 0)
730 s_A = (1, 0, 0)
731
732 box_B_size = 0.5
733 box_A_size = 0.5
734
735 x_j = (0.2, 0.2, 0.0)
736 x_i = (0.8, 0.2, 0.2)
737 m_j = 1
738 m_i = 1
739
740
741 for order in range(1, 6):
742     print("--------------------------------")
743     print(f"Running FMM order = {order}")
744     print("--------------------------------")
745
746     force_i, force_i_exact, angle = run_fmm(x_i, x_j, s_A, s_B, m_j, order, do_print=True)
747     ax, rel_error, abs_error = plot_fmm_case(
748         s_A, box_A_size, x_i, s_B, box_B_size, x_j, force_i, force_i_exact, 0.2
749     )
750
751     plt.title(f"FMM order={order} angle={angle:.5f} rel error={rel_error:.2e}")
752     plt.legend(loc="center left", bbox_to_anchor=(-0.3, 0.5))
753     plt.show()
754
755     print("force_i =", force_i)
756     print("force_i_exact =", force_i_exact)
757     print("abs error =", abs_error)
758     print("rel error =", rel_error)
  • FMM order=1 angle=0.62925 rel error=6.33e-01
  • FMM order=2 angle=0.62925 rel error=3.29e-01
  • FMM order=3 angle=0.62925 rel error=1.53e-01
  • FMM order=4 angle=0.62925 rel error=6.83e-02
  • FMM order=5 angle=0.62925 rel error=3.18e-02
--------------------------------
Running FMM order = 1
--------------------------------
x_i = (0.8, 0.2, 0.2)
x_j = (0.2, 0.2, 0.0)
s_A = (1, 0, 0)
s_B = (0, 0, 0)
b_j = (0.2, 0.2, 0.0)
r = (-1, 0, 0)
a_i = (-0.19999999999999996, 0.2, 0.2)
Q_n_B = SymTensorCollection_f64_0_0(t0=1)
D_n = SymTensorCollection_f64_1_1(
  t1=SymTensor3d_1(v_0=1, v_1=-0, v_2=-0)
)
dM_k = SymTensorCollection_f64_1_1(
  t1=SymTensor3d_1(v_0=1, v_1=-0, v_2=-0)
)
a_k = SymTensorCollection_f64_0_0(t0=1)
force_i = [-1.  0.  0.]
force_i_exact = [-2.37170825  0.         -0.79056942]
b_A_size = 0.34641016151377546
b_B_size = 0.28284271247461906
b_dist = 1.0
angle = 0.6292528739883945
force_i = [-1.  0.  0.]
force_i_exact = [-2.37170825  0.         -0.79056942]
abs error = 1.5832193498525176
rel error = 0.6332877399410073
--------------------------------
Running FMM order = 2
--------------------------------
x_i = (0.8, 0.2, 0.2)
x_j = (0.2, 0.2, 0.0)
s_A = (1, 0, 0)
s_B = (0, 0, 0)
b_j = (0.2, 0.2, 0.0)
r = (-1, 0, 0)
a_i = (-0.19999999999999996, 0.2, 0.2)
Q_n_B = SymTensorCollection_f64_0_1(
  t0=1,
  t1=SymTensor3d_1(v_0=0.2, v_1=0.2, v_2=0)
)
D_n = SymTensorCollection_f64_1_2(
  t1=SymTensor3d_1(v_0=1, v_1=-0, v_2=-0),
  t2=SymTensor3d_2(v_00=2, v_01=-0, v_02=-0, v_11=-1, v_12=0, v_22=-1)
)
dM_k = SymTensorCollection_f64_1_2(
  t1=SymTensor3d_1(v_0=1.4, v_1=-0.2, v_2=0),
  t2=SymTensor3d_2(v_00=-2, v_01=0, v_02=0, v_11=1, v_12=-0, v_22=1)
)
a_k = SymTensorCollection_f64_0_1(
  t0=1,
  t1=SymTensor3d_1(v_0=-0.19999999999999996, v_1=0.2, v_2=0.2)
)
force_i = [-1.8 -0.  -0.2]
force_i_exact = [-2.37170825  0.         -0.79056942]
b_A_size = 0.34641016151377546
b_B_size = 0.28284271247461906
b_dist = 1.0
angle = 0.6292528739883945
force_i = [-1.8 -0.  -0.2]
force_i_exact = [-2.37170825  0.         -0.79056942]
abs error = 0.8219626217344294
rel error = 0.32878504869377184
--------------------------------
Running FMM order = 3
--------------------------------
x_i = (0.8, 0.2, 0.2)
x_j = (0.2, 0.2, 0.0)
s_A = (1, 0, 0)
s_B = (0, 0, 0)
b_j = (0.2, 0.2, 0.0)
r = (-1, 0, 0)
a_i = (-0.19999999999999996, 0.2, 0.2)
Q_n_B = SymTensorCollection_f64_0_2(
  t0=1,
  t1=SymTensor3d_1(v_0=0.2, v_1=0.2, v_2=0),
  t2=SymTensor3d_2(v_00=0.04000000000000001, v_01=0.04000000000000001, v_02=0, v_11=0.04000000000000001, v_12=0, v_22=0)
)
D_n = SymTensorCollection_f64_1_3(
  t1=SymTensor3d_1(v_0=1, v_1=-0, v_2=-0),
  t2=SymTensor3d_2(v_00=2, v_01=-0, v_02=-0, v_11=-1, v_12=0, v_22=-1),
  t3=SymTensor3d_3(v_000=6, v_001=0, v_002=0, v_011=-3, v_012=0, v_022=-3, v_111=0, v_112=0, v_122=0, v_222=0)
)
dM_k = SymTensorCollection_f64_1_3(
  t1=SymTensor3d_1(v_0=1.46, v_1=-0.32000000000000006, v_2=0),
  t2=SymTensor3d_2(v_00=-3.2, v_01=0.6000000000000001, v_02=0, v_11=1.6, v_12=-0, v_22=1.6),
  t3=SymTensor3d_3(v_000=6, v_001=0, v_002=0, v_011=-3, v_012=0, v_022=-3, v_111=0, v_112=0, v_122=0, v_222=0)
)
a_k = SymTensorCollection_f64_0_2(
  t0=1,
  t1=SymTensor3d_1(v_0=-0.19999999999999996, v_1=0.2, v_2=0.2),
  t2=SymTensor3d_2(v_00=0.03999999999999998, v_01=-0.039999999999999994, v_02=-0.039999999999999994, v_11=0.04000000000000001, v_12=0.04000000000000001, v_22=0.04000000000000001)
)
force_i = [-2.22000000e+00  4.16333634e-17 -4.40000000e-01]
force_i_exact = [-2.37170825  0.         -0.79056942]
b_A_size = 0.34641016151377546
b_B_size = 0.28284271247461906
b_dist = 1.0
angle = 0.6292528739883945
force_i = [-2.22000000e+00  4.16333634e-17 -4.40000000e-01]
force_i_exact = [-2.37170825  0.         -0.79056942]
abs error = 0.3819873118341143
rel error = 0.15279492473364575
--------------------------------
Running FMM order = 4
--------------------------------
x_i = (0.8, 0.2, 0.2)
x_j = (0.2, 0.2, 0.0)
s_A = (1, 0, 0)
s_B = (0, 0, 0)
b_j = (0.2, 0.2, 0.0)
r = (-1, 0, 0)
a_i = (-0.19999999999999996, 0.2, 0.2)
Q_n_B = SymTensorCollection_f64_0_3(
  t0=1,
  t1=SymTensor3d_1(v_0=0.2, v_1=0.2, v_2=0),
  t2=SymTensor3d_2(v_00=0.04000000000000001, v_01=0.04000000000000001, v_02=0, v_11=0.04000000000000001, v_12=0, v_22=0),
  t3=SymTensor3d_3(v_000=0.008000000000000002, v_001=0.008000000000000002, v_002=0, v_011=0.008000000000000002, v_012=0, v_022=0, v_111=0.008000000000000002, v_112=0, v_122=0, v_222=0)
)
D_n = SymTensorCollection_f64_1_4(
  t1=SymTensor3d_1(v_0=1, v_1=-0, v_2=-0),
  t2=SymTensor3d_2(v_00=2, v_01=-0, v_02=-0, v_11=-1, v_12=0, v_22=-1),
  t3=SymTensor3d_3(v_000=6, v_001=0, v_002=0, v_011=-3, v_012=0, v_022=-3, v_111=0, v_112=0, v_122=0, v_222=0),
  t4=SymTensor3d_4(v_0000=24, v_0001=0, v_0002=0, v_0011=-12, v_0012=0, v_0022=-12, v_0111=0, v_0112=0, v_0122=0, v_0222=0, v_1111=9, v_1112=0, v_1122=3, v_1222=0, v_2222=9)
)
dM_k = SymTensorCollection_f64_1_4(
  t1=SymTensor3d_1(v_0=1.444, v_1=-0.3560000000000001, v_2=0),
  t2=SymTensor3d_2(v_00=-3.4400000000000004, v_01=1.08, v_02=0, v_11=1.6600000000000001, v_12=-0, v_22=1.7800000000000002),
  t3=SymTensor3d_3(v_000=10.8, v_001=-2.4000000000000004, v_002=0, v_011=-5.4, v_012=0, v_022=-5.4, v_111=1.8, v_112=0, v_122=0.6000000000000001, v_222=0),
  t4=SymTensor3d_4(v_0000=-24, v_0001=-0, v_0002=-0, v_0011=12, v_0012=-0, v_0022=12, v_0111=-0, v_0112=-0, v_0122=-0, v_0222=-0, v_1111=-9, v_1112=-0, v_1122=-3, v_1222=-0, v_2222=-9)
)
a_k = SymTensorCollection_f64_0_3(
  t0=1,
  t1=SymTensor3d_1(v_0=-0.19999999999999996, v_1=0.2, v_2=0.2),
  t2=SymTensor3d_2(v_00=0.03999999999999998, v_01=-0.039999999999999994, v_02=-0.039999999999999994, v_11=0.04000000000000001, v_12=0.04000000000000001, v_22=0.04000000000000001),
  t3=SymTensor3d_3(v_000=-0.007999999999999995, v_001=0.007999999999999997, v_002=0.007999999999999997, v_011=-0.008, v_012=-0.008, v_022=-0.008, v_111=0.008000000000000002, v_112=0.008000000000000002, v_122=0.008000000000000002, v_222=0.008000000000000002)
)
force_i = [-2.38000000e+00  4.51028104e-17 -6.20000000e-01]
force_i_exact = [-2.37170825  0.         -0.79056942]
b_A_size = 0.34641016151377546
b_B_size = 0.28284271247461906
b_dist = 1.0
angle = 0.6292528739883945
force_i = [-2.38000000e+00  4.51028104e-17 -6.20000000e-01]
force_i_exact = [-2.37170825  0.         -0.79056942]
abs error = 0.17077083634710005
rel error = 0.06830833453884004
--------------------------------
Running FMM order = 5
--------------------------------
x_i = (0.8, 0.2, 0.2)
x_j = (0.2, 0.2, 0.0)
s_A = (1, 0, 0)
s_B = (0, 0, 0)
b_j = (0.2, 0.2, 0.0)
r = (-1, 0, 0)
a_i = (-0.19999999999999996, 0.2, 0.2)
Q_n_B = SymTensorCollection_f64_0_4(
  t0=1,
  t1=SymTensor3d_1(v_0=0.2, v_1=0.2, v_2=0),
  t2=SymTensor3d_2(v_00=0.04000000000000001, v_01=0.04000000000000001, v_02=0, v_11=0.04000000000000001, v_12=0, v_22=0),
  t3=SymTensor3d_3(v_000=0.008000000000000002, v_001=0.008000000000000002, v_002=0, v_011=0.008000000000000002, v_012=0, v_022=0, v_111=0.008000000000000002, v_112=0, v_122=0, v_222=0),
  t4=SymTensor3d_4(v_0000=0.0016000000000000005, v_0001=0.0016000000000000005, v_0002=0, v_0011=0.0016000000000000005, v_0012=0, v_0022=0, v_0111=0.0016000000000000005, v_0112=0, v_0122=0, v_0222=0, v_1111=0.0016000000000000005, v_1112=0, v_1122=0, v_1222=0, v_2222=0)
)
D_n = SymTensorCollection_f64_1_5(
  t1=SymTensor3d_1(v_0=1, v_1=-0, v_2=-0),
  t2=SymTensor3d_2(v_00=2, v_01=-0, v_02=-0, v_11=-1, v_12=0, v_22=-1),
  t3=SymTensor3d_3(v_000=6, v_001=0, v_002=0, v_011=-3, v_012=0, v_022=-3, v_111=0, v_112=0, v_122=0, v_222=0),
  t4=SymTensor3d_4(v_0000=24, v_0001=0, v_0002=0, v_0011=-12, v_0012=0, v_0022=-12, v_0111=0, v_0112=0, v_0122=0, v_0222=0, v_1111=9, v_1112=0, v_1122=3, v_1222=0, v_2222=9),
  t5=SymTensor3d_5(v_00000=120, v_00001=-0, v_00002=-0, v_00011=-60, v_00012=0, v_00022=-60, v_00111=0, v_00112=0, v_00122=0, v_00222=0, v_01111=45, v_01112=-0, v_01122=15, v_01222=-0, v_02222=45, v_11111=0, v_11112=-0, v_11122=0, v_11222=0, v_12222=-0, v_22222=0)
)
dM_k = SymTensorCollection_f64_1_5(
  t1=SymTensor3d_1(v_0=1.431, v_1=-0.3600000000000001, v_2=0),
  t2=SymTensor3d_2(v_00=-3.3600000000000003, v_01=1.26, v_02=0, v_11=1.56, v_12=-0, v_22=1.8000000000000003),
  t3=SymTensor3d_3(v_000=12, v_001=-4.800000000000001, v_002=0, v_011=-5.7, v_012=0, v_022=-6.300000000000001, v_111=3.6000000000000005, v_112=0, v_122=1.2000000000000002, v_222=0),
  t4=SymTensor3d_4(v_0000=-48, v_0001=12, v_0002=-0, v_0011=24, v_0012=-0, v_0022=24, v_0111=-9, v_0112=-0, v_0122=-3, v_0222=-0, v_1111=-18, v_1112=-0, v_1122=-6, v_1222=-0, v_2222=-18),
  t5=SymTensor3d_5(v_00000=120, v_00001=-0, v_00002=-0, v_00011=-60, v_00012=0, v_00022=-60, v_00111=0, v_00112=0, v_00122=0, v_00222=0, v_01111=45, v_01112=-0, v_01122=15, v_01222=-0, v_02222=45, v_11111=0, v_11112=-0, v_11122=0, v_11222=0, v_12222=-0, v_22222=0)
)
a_k = SymTensorCollection_f64_0_4(
  t0=1,
  t1=SymTensor3d_1(v_0=-0.19999999999999996, v_1=0.2, v_2=0.2),
  t2=SymTensor3d_2(v_00=0.03999999999999998, v_01=-0.039999999999999994, v_02=-0.039999999999999994, v_11=0.04000000000000001, v_12=0.04000000000000001, v_22=0.04000000000000001),
  t3=SymTensor3d_3(v_000=-0.007999999999999995, v_001=0.007999999999999997, v_002=0.007999999999999997, v_011=-0.008, v_012=-0.008, v_022=-0.008, v_111=0.008000000000000002, v_112=0.008000000000000002, v_122=0.008000000000000002, v_222=0.008000000000000002),
  t4=SymTensor3d_4(v_0000=0.0015999999999999986, v_0001=-0.001599999999999999, v_0002=-0.001599999999999999, v_0011=0.0015999999999999996, v_0012=0.0015999999999999996, v_0022=0.0015999999999999996, v_0111=-0.0016, v_0112=-0.0016, v_0122=-0.0016, v_0222=-0.0016, v_1111=0.0016000000000000005, v_1112=0.0016000000000000005, v_1122=0.0016000000000000005, v_1222=0.0016000000000000005, v_2222=0.0016000000000000005)
)
force_i = [-2.41500000e+00  3.12250226e-17 -7.24000000e-01]
force_i_exact = [-2.37170825  0.         -0.79056942]
b_A_size = 0.34641016151377546
b_B_size = 0.28284271247461906
b_dist = 1.0
angle = 0.6292528739883945
force_i = [-2.41500000e+00  3.12250226e-17 -7.24000000e-01]
force_i_exact = [-2.37170825  0.         -0.79056942]
abs error = 0.07940820523782492
rel error = 0.03176328209512998

Sweeping through angles#

766 s_B = (0, 0, 0)
767 s_A_all = [(0.8, 0, 0), (1, 0, 0), (1.2, 0, 0)]
768
769 box_B_size = 0.5
770 box_A_size = 0.5
771
772 x_j = (0.2, 0.2, 0.0)
773 x_i = (0.8, 0.2, 0.2)
774 m_j = 1
775 m_i = 1
776
777 order = 3
778
779 for s_A in s_A_all:
780     print("--------------------------------")
781     print(f"Running FMM s_a = {s_A}")
782     print("--------------------------------")
783
784     force_i, force_i_exact, angle = run_fmm(x_i, x_j, s_A, s_B, m_j, order, do_print=True)
785     ax, rel_error, abs_error = plot_fmm_case(
786         s_A, box_A_size, x_i, s_B, box_B_size, x_j, force_i, force_i_exact, 0.2
787     )
788
789     plt.title(f"FMM order={order} angle={angle:.5f} rel error={rel_error:.2e}")
790     plt.legend(loc="center left", bbox_to_anchor=(-0.3, 0.5))
791     plt.show()
792
793     print("force_i =", force_i)
794     print("force_i_exact =", force_i_exact)
795     print("abs error =", abs_error)
796     print("rel error =", rel_error)
  • FMM order=3 angle=0.70711 rel error=6.39e-02
  • FMM order=3 angle=0.62925 rel error=1.53e-01
  • FMM order=3 angle=0.64395 rel error=2.81e-01
--------------------------------
Running FMM s_a = (0.8, 0, 0)
--------------------------------
x_i = (0.8, 0.2, 0.2)
x_j = (0.2, 0.2, 0.0)
s_A = (0.8, 0, 0)
s_B = (0, 0, 0)
b_j = (0.2, 0.2, 0.0)
r = (-0.8, 0, 0)
a_i = (0.0, 0.2, 0.2)
Q_n_B = SymTensorCollection_f64_0_2(
  t0=1,
  t1=SymTensor3d_1(v_0=0.2, v_1=0.2, v_2=0),
  t2=SymTensor3d_2(v_00=0.04000000000000001, v_01=0.04000000000000001, v_02=0, v_11=0.04000000000000001, v_12=0, v_22=0)
)
D_n = SymTensorCollection_f64_1_3(
  t1=SymTensor3d_1(v_0=1.5625, v_1=-0, v_2=-0),
  t2=SymTensor3d_2(v_00=3.906249999999999, v_01=-0, v_02=-0, v_11=-1.9531249999999998, v_12=0, v_22=-1.9531249999999998),
  t3=SymTensor3d_3(v_000=14.648437499999995, v_001=0, v_002=0, v_011=-7.324218749999997, v_012=0, v_022=-7.324218749999997, v_111=0, v_112=0, v_122=0, v_222=0)
)
dM_k = SymTensorCollection_f64_1_3(
  t1=SymTensor3d_1(v_0=2.490234375, v_1=-0.68359375, v_2=0),
  t2=SymTensor3d_2(v_00=-6.835937499999998, v_01=1.4648437499999996, v_02=0, v_11=3.417968749999999, v_12=-0, v_22=3.417968749999999),
  t3=SymTensor3d_3(v_000=14.648437499999995, v_001=0, v_002=0, v_011=-7.324218749999997, v_012=0, v_022=-7.324218749999997, v_111=0, v_112=0, v_122=0, v_222=0)
)
a_k = SymTensorCollection_f64_0_2(
  t0=1,
  t1=SymTensor3d_1(v_0=0, v_1=0.2, v_2=0.2),
  t2=SymTensor3d_2(v_00=0, v_01=0, v_02=0, v_11=0.04000000000000001, v_12=0.04000000000000001, v_22=0.04000000000000001)
)
force_i = [-2.49023438e+00  1.11022302e-16 -6.83593750e-01]
force_i_exact = [-2.37170825  0.         -0.79056942]
b_A_size = 0.28284271247461906
b_B_size = 0.28284271247461906
b_dist = 0.8
angle = 0.7071067811865476
force_i = [-2.49023438e+00  1.11022302e-16 -6.83593750e-01]
force_i_exact = [-2.37170825  0.         -0.79056942]
abs error = 0.15966288352037078
rel error = 0.06386515340814833
--------------------------------
Running FMM s_a = (1, 0, 0)
--------------------------------
x_i = (0.8, 0.2, 0.2)
x_j = (0.2, 0.2, 0.0)
s_A = (1, 0, 0)
s_B = (0, 0, 0)
b_j = (0.2, 0.2, 0.0)
r = (-1, 0, 0)
a_i = (-0.19999999999999996, 0.2, 0.2)
Q_n_B = SymTensorCollection_f64_0_2(
  t0=1,
  t1=SymTensor3d_1(v_0=0.2, v_1=0.2, v_2=0),
  t2=SymTensor3d_2(v_00=0.04000000000000001, v_01=0.04000000000000001, v_02=0, v_11=0.04000000000000001, v_12=0, v_22=0)
)
D_n = SymTensorCollection_f64_1_3(
  t1=SymTensor3d_1(v_0=1, v_1=-0, v_2=-0),
  t2=SymTensor3d_2(v_00=2, v_01=-0, v_02=-0, v_11=-1, v_12=0, v_22=-1),
  t3=SymTensor3d_3(v_000=6, v_001=0, v_002=0, v_011=-3, v_012=0, v_022=-3, v_111=0, v_112=0, v_122=0, v_222=0)
)
dM_k = SymTensorCollection_f64_1_3(
  t1=SymTensor3d_1(v_0=1.46, v_1=-0.32000000000000006, v_2=0),
  t2=SymTensor3d_2(v_00=-3.2, v_01=0.6000000000000001, v_02=0, v_11=1.6, v_12=-0, v_22=1.6),
  t3=SymTensor3d_3(v_000=6, v_001=0, v_002=0, v_011=-3, v_012=0, v_022=-3, v_111=0, v_112=0, v_122=0, v_222=0)
)
a_k = SymTensorCollection_f64_0_2(
  t0=1,
  t1=SymTensor3d_1(v_0=-0.19999999999999996, v_1=0.2, v_2=0.2),
  t2=SymTensor3d_2(v_00=0.03999999999999998, v_01=-0.039999999999999994, v_02=-0.039999999999999994, v_11=0.04000000000000001, v_12=0.04000000000000001, v_22=0.04000000000000001)
)
force_i = [-2.22000000e+00  4.16333634e-17 -4.40000000e-01]
force_i_exact = [-2.37170825  0.         -0.79056942]
b_A_size = 0.34641016151377546
b_B_size = 0.28284271247461906
b_dist = 1.0
angle = 0.6292528739883945
force_i = [-2.22000000e+00  4.16333634e-17 -4.40000000e-01]
force_i_exact = [-2.37170825  0.         -0.79056942]
abs error = 0.3819873118341143
rel error = 0.15279492473364575
--------------------------------
Running FMM s_a = (1.2, 0, 0)
--------------------------------
x_i = (0.8, 0.2, 0.2)
x_j = (0.2, 0.2, 0.0)
s_A = (1.2, 0, 0)
s_B = (0, 0, 0)
b_j = (0.2, 0.2, 0.0)
r = (-1.2, 0, 0)
a_i = (-0.3999999999999999, 0.2, 0.2)
Q_n_B = SymTensorCollection_f64_0_2(
  t0=1,
  t1=SymTensor3d_1(v_0=0.2, v_1=0.2, v_2=0),
  t2=SymTensor3d_2(v_00=0.04000000000000001, v_01=0.04000000000000001, v_02=0, v_11=0.04000000000000001, v_12=0, v_22=0)
)
D_n = SymTensorCollection_f64_1_3(
  t1=SymTensor3d_1(v_0=0.6944444444444444, v_1=-0, v_2=-0),
  t2=SymTensor3d_2(v_00=1.157407407407407, v_01=-0, v_02=-0, v_11=-0.5787037037037037, v_12=0, v_22=-0.5787037037037037),
  t3=SymTensor3d_3(v_000=2.893518518518519, v_001=0, v_002=0, v_011=-1.4467592592592589, v_012=0, v_022=-1.4467592592592589, v_111=0, v_112=0, v_122=0, v_222=0)
)
dM_k = SymTensorCollection_f64_1_3(
  t1=SymTensor3d_1(v_0=0.954861111111111, v_1=-0.1736111111111111, v_2=0),
  t2=SymTensor3d_2(v_00=-1.7361111111111107, v_01=0.2893518518518518, v_02=0, v_11=0.8680555555555556, v_12=-0, v_22=0.8680555555555556),
  t3=SymTensor3d_3(v_000=2.893518518518519, v_001=0, v_002=0, v_011=-1.4467592592592589, v_012=0, v_022=-1.4467592592592589, v_111=0, v_112=0, v_122=0, v_222=0)
)
a_k = SymTensorCollection_f64_0_2(
  t0=1,
  t1=SymTensor3d_1(v_0=-0.3999999999999999, v_1=0.2, v_2=0.2),
  t2=SymTensor3d_2(v_00=0.15999999999999992, v_01=-0.07999999999999999, v_02=-0.07999999999999999, v_11=0.04000000000000001, v_12=0.04000000000000001, v_22=0.04000000000000001)
)
force_i = [-1.88078704e+00 -1.38777878e-17 -2.89351852e-01]
force_i_exact = [-2.37170825  0.         -0.79056942]
b_A_size = 0.48989794855663554
b_B_size = 0.28284271247461906
b_dist = 1.2
angle = 0.6439505508593789
force_i = [-1.88078704e+00 -1.38777878e-17 -2.89351852e-01]
force_i_exact = [-2.37170825  0.         -0.79056942]
abs error = 0.7015858309588148
rel error = 0.28063433238352603

FMM precision (Angle)#

For this test we will generate a pair of random positions \(x_i\) and \(x_j\). Then we will generate two boxes around the positions \(s_A\) and \(s_B\) where each is at a distance box_scale_fact from their respective particle. We then perform the FMM expansion to compute the force on \(x_i\) as well as the exact force. We will then plot the relative error as a function of the angle \(\theta = (b_A + b_B) / |\mathbf{s}_A - \mathbf{s}_B|\) where \(b_A\) and \(b_B\) are the distances from the particle to the box centers.

810 plt.figure()
811 for order in range(1, 6):
812     print("--------------------------------")
813     print(f"Running FMM order = {order}")
814     print("--------------------------------")
815
816     # set seed
817     rng = np.random.default_rng(111)
818
819     N = 50000
820
821     # generate a random set of position in a box of bounds (-1,1)x(-1,1)x(-1,1)
822     x_i_all = []
823     for i in range(N):
824         x_i_all.append((rng.uniform(-1, 1), rng.uniform(-1, 1), rng.uniform(-1, 1)))
825
826     # same for x_j
827     x_j_all = []
828     for i in range(N):
829         x_j_all.append((rng.uniform(-1, 1), rng.uniform(-1, 1), rng.uniform(-1, 1)))
830
831     box_scale_fact_all = np.linspace(0, 0.1, N).tolist()
832
833     # same for box_1_center
834     s_A_all = []
835     for p, box_scale_fact in zip(x_i_all, box_scale_fact_all):
836         s_A_all.append(
837             (
838                 p[0] + box_scale_fact * rng.uniform(-1, 1),
839                 p[1] + box_scale_fact * rng.uniform(-1, 1),
840                 p[2] + box_scale_fact * rng.uniform(-1, 1),
841             )
842         )
843
844     # same for box_2_center
845     s_B_all = []
846     for p, box_scale_fact in zip(x_j_all, box_scale_fact_all):
847         s_B_all.append(
848             (
849                 p[0] + box_scale_fact * rng.uniform(-1, 1),
850                 p[1] + box_scale_fact * rng.uniform(-1, 1),
851                 p[2] + box_scale_fact * rng.uniform(-1, 1),
852             )
853         )
854
855     angles = []
856     rel_errors = []
857
858     for x_i, x_j, s_A, s_B in zip(x_i_all, x_j_all, s_A_all, s_B_all):
859
860         force_i, force_i_exact, angle = run_fmm(x_i, x_j, s_A, s_B, m_j, order, do_print=False)
861
862         abs_error = np.linalg.norm(force_i - force_i_exact)
863         rel_error = abs_error / np.linalg.norm(force_i_exact)
864
865         b_A_size = np.linalg.norm(np.array(s_A) - np.array(x_i))
866         b_B_size = np.linalg.norm(np.array(s_B) - np.array(x_j))
867         b_dist = np.linalg.norm(np.array(s_A) - np.array(s_B))
868         angle = (b_A_size + b_B_size) / b_dist
869
870         if angle > 5.0 or angle < 1e-4:
871             continue
872
873         angles.append(angle)
874         rel_errors.append(rel_error)
875
876     print(f"Computed for {len(angles)} cases")
877
878     plt.scatter(angles, rel_errors, s=1, label=f"FMM order = {order}")
879
880
881 def plot_powerlaw(order, center_y):
882     X = [1e-3, 1e-2 / 3, 1e-1]
883     Y = [center_y * (x) ** order for x in X]
884     plt.plot(X, Y, linestyle="dashed", color="black")
885     bbox = dict(boxstyle="round", fc="blanchedalmond", ec="orange", alpha=0.9)
886     plt.text(X[1], Y[1], f"$\\propto x^{order}$", fontsize=9, bbox=bbox)
887
888
889 plot_powerlaw(1, 1)
890 plot_powerlaw(2, 1)
891 plot_powerlaw(3, 1)
892 plot_powerlaw(4, 1)
893 plot_powerlaw(5, 1)
894
895 plt.xlabel("Angle")
896 plt.ylabel("Relative Error")
897 plt.xscale("log")
898 plt.yscale("log")
899 plt.title("FMM precision")
900 plt.legend(loc="lower right")
901 plt.grid()
902 plt.show()
FMM precision
--------------------------------
Running FMM order = 1
--------------------------------
Computed for 49962 cases
--------------------------------
Running FMM order = 2
--------------------------------
Computed for 49962 cases
--------------------------------
Running FMM order = 3
--------------------------------
Computed for 49962 cases
--------------------------------
Running FMM order = 4
--------------------------------
Computed for 49962 cases
--------------------------------
Running FMM order = 5
--------------------------------
Computed for 49962 cases

Mass moment offset#

Now that we know how to compute a FMM force, we now need some remaining tools to exploit it fully in a code. In a code using a tree the procedure to using a FMM is to first propagate the mass moment upward from leafs cells up to the root. Then compute the gravitation moments for all cell-cell interations and then propagate the gravitational moment downward down to the leaves.

We start with the upward pass for the mass moment. To perform it we need to compute the mass moment of a parent according to the one of its children. The issue is that the childrens and the parents do not share the same center. Therefor we need to offset the mass moment of the children to the parent center before summing their moments to get the parent’s one.

This is what we call mass moment translation/offset. This section will showcase its usage and precision.

We start of by defining a particle \(x_j\) and a box \(s_B\) around it as well as a new box \(s_B'\). The goal will be to offset the mass moment of the box \(s_B\) to the box \(s_B'\) and compare it to the moment of the box \(s_B'\) computed directly. This should yield the same result meaning that we never need to compute the moment directly at the parent center and simply use its childrens instead.

932 s_B = (0, 0, 0)
933 box_B_size = 1.0
934 x_j = (0.2, 0.2, 0.0)
935 m_j = 1
936
937 s_B_new = (0.3, 0.3, 0.3)
def plot_mass_moment_offset(s_B, s_B_new, box_B_size):
946 def plot_mass_moment_offset(s_B, s_B_new, box_B_size):
947     box_B = shamrock.math.AABB_f64_3(
948         (
949             s_B[0] - box_B_size / 2,
950             s_B[1] - box_B_size / 2,
951             s_B[2] - box_B_size / 2,
952         ),
953         (
954             s_B[0] + box_B_size / 2,
955             s_B[1] + box_B_size / 2,
956             s_B[2] + box_B_size / 2,
957         ),
958     )
959
960     box_B_new = shamrock.math.AABB_f64_3(
961         (
962             s_B_new[0] - box_B_size / 2,
963             s_B_new[1] - box_B_size / 2,
964             s_B_new[2] - box_B_size / 2,
965         ),
966         (
967             s_B_new[0] + box_B_size / 2,
968             s_B_new[1] + box_B_size / 2,
969             s_B_new[2] + box_B_size / 2,
970         ),
971     )
972
973     fig = plt.figure()
974     ax = fig.add_subplot(111, projection="3d")
975
976     draw_arrow(ax, s_B, x_j, "black", "$b_j = x_j - s_B$")
977     draw_arrow(ax, s_B_new, x_j, "red", "$b_j' = x_j - s_B'$")
978
979     ax.scatter(s_B[0], s_B[1], s_B[2], color="black", label="s_B")
980     ax.scatter(s_B_new[0], s_B_new[1], s_B_new[2], color="red", label="s_B'")
981     ax.scatter(x_j[0], x_j[1], x_j[2], color="blue", label="$x_j$")
982
983     draw_aabb(ax, box_B, "blue", 0.2)
984     draw_aabb(ax, box_B_new, "red", 0.2)
985
986     center_view = (0.0, 0.0, 0.0)
987     view_size = 2.0
988     ax.set_xlim(center_view[0] - view_size / 2, center_view[0] + view_size / 2)
989     ax.set_ylim(center_view[1] - view_size / 2, center_view[1] + view_size / 2)
990     ax.set_zlim(center_view[2] - view_size / 2, center_view[2] + view_size / 2)
991     ax.set_xlabel("X")
992     ax.set_ylabel("Y")
993     ax.set_zlabel("Z")
994
995     return ax
1005 plot_mass_moment_offset(s_B, s_B_new, box_B_size)
1006
1007 plt.title("Mass moment offset illustration")
1008 plt.legend(loc="center left", bbox_to_anchor=(-0.3, 0.5))
1009 plt.show()
Mass moment offset illustration

Moment for box B

1013 b_j = (x_j[0] - s_B[0], x_j[1] - s_B[1], x_j[2] - s_B[2])
1014 Q_n_B = shamrock.math.SymTensorCollection_f64_0_5.from_vec(b_j)
1015 Q_n_B *= m_j
1016 print("b_j =", b_j)
1017 print("Q_n_B =", Q_n_B)
b_j = (0.2, 0.2, 0.0)
Q_n_B = SymTensorCollection_f64_0_5(
  t0=1,
  t1=SymTensor3d_1(v_0=0.2, v_1=0.2, v_2=0),
  t2=SymTensor3d_2(v_00=0.04000000000000001, v_01=0.04000000000000001, v_02=0, v_11=0.04000000000000001, v_12=0, v_22=0),
  t3=SymTensor3d_3(v_000=0.008000000000000002, v_001=0.008000000000000002, v_002=0, v_011=0.008000000000000002, v_012=0, v_022=0, v_111=0.008000000000000002, v_112=0, v_122=0, v_222=0),
  t4=SymTensor3d_4(v_0000=0.0016000000000000005, v_0001=0.0016000000000000005, v_0002=0, v_0011=0.0016000000000000005, v_0012=0, v_0022=0, v_0111=0.0016000000000000005, v_0112=0, v_0122=0, v_0222=0, v_1111=0.0016000000000000005, v_1112=0, v_1122=0, v_1222=0, v_2222=0),
  t5=SymTensor3d_5(v_00000=0.00032000000000000013, v_00001=0.00032000000000000013, v_00002=0, v_00011=0.00032000000000000013, v_00012=0, v_00022=0, v_00111=0.00032000000000000013, v_00112=0, v_00122=0, v_00222=0, v_01111=0.00032000000000000013, v_01112=0, v_01122=0, v_01222=0, v_02222=0, v_11111=0.00032000000000000013, v_11112=0, v_11122=0, v_11222=0, v_12222=0, v_22222=0)
)

Moment for box B’

1021 b_jp = (x_j[0] - s_B_new[0], x_j[1] - s_B_new[1], x_j[2] - s_B_new[2])
1022 Q_n_Bp = shamrock.math.SymTensorCollection_f64_0_5.from_vec(b_jp)
1023 Q_n_Bp *= m_j
1024 print("b_jp =", b_jp)
1025 print("Q_n_Bp =", Q_n_Bp)
b_jp = (-0.09999999999999998, -0.09999999999999998, -0.3)
Q_n_Bp = SymTensorCollection_f64_0_5(
  t0=1,
  t1=SymTensor3d_1(v_0=-0.09999999999999998, v_1=-0.09999999999999998, v_2=-0.3),
  t2=SymTensor3d_2(v_00=0.009999999999999995, v_01=0.009999999999999995, v_02=0.029999999999999992, v_11=0.009999999999999995, v_12=0.029999999999999992, v_22=0.09),
  t3=SymTensor3d_3(v_000=-0.0009999999999999994, v_001=-0.0009999999999999994, v_002=-0.0029999999999999983, v_011=-0.0009999999999999994, v_012=-0.0029999999999999983, v_022=-0.008999999999999998, v_111=-0.0009999999999999994, v_112=-0.0029999999999999983, v_122=-0.008999999999999998, v_222=-0.027),
  t4=SymTensor3d_4(v_0000=9.999999999999991e-05, v_0001=9.999999999999991e-05, v_0002=0.00029999999999999976, v_0011=9.999999999999991e-05, v_0012=0.00029999999999999976, v_0022=0.0008999999999999995, v_0111=9.999999999999991e-05, v_0112=0.00029999999999999976, v_0122=0.0008999999999999995, v_0222=0.0026999999999999993, v_1111=9.999999999999991e-05, v_1112=0.00029999999999999976, v_1122=0.0008999999999999995, v_1222=0.0026999999999999993, v_2222=0.0081),
  t5=SymTensor3d_5(v_00000=-9.999999999999989e-06, v_00001=-9.999999999999989e-06, v_00002=-2.999999999999997e-05, v_00011=-9.999999999999989e-06, v_00012=-2.999999999999997e-05, v_00022=-8.999999999999994e-05, v_00111=-9.999999999999989e-06, v_00112=-2.999999999999997e-05, v_00122=-8.999999999999994e-05, v_00222=-0.00026999999999999984, v_01111=-9.999999999999989e-06, v_01112=-2.999999999999997e-05, v_01122=-8.999999999999994e-05, v_01222=-0.00026999999999999984, v_02222=-0.0008099999999999997, v_11111=-9.999999999999989e-06, v_11112=-2.999999999999997e-05, v_11122=-8.999999999999994e-05, v_11222=-0.00026999999999999984, v_12222=-0.0008099999999999997, v_22222=-0.00243)
)

Offset the moment in box B to box B’

Q_n_B_offset = SymTensorCollection_f64_0_5(
  t0=1,
  t1=SymTensor3d_1(v_0=-0.09999999999999998, v_1=-0.09999999999999998, v_2=-0.3),
  t2=SymTensor3d_2(v_00=0.009999999999999998, v_01=0.009999999999999998, v_02=0.029999999999999995, v_11=0.009999999999999998, v_12=0.029999999999999995, v_22=0.09),
  t3=SymTensor3d_3(v_000=-0.0010000000000000009, v_001=-0.0010000000000000009, v_002=-0.003000000000000001, v_011=-0.0010000000000000009, v_012=-0.003000000000000001, v_022=-0.009, v_111=-0.0010000000000000009, v_112=-0.003000000000000001, v_122=-0.009000000000000001, v_222=-0.027),
  t4=SymTensor3d_4(v_0000=0.00010000000000000048, v_0001=0.00010000000000000048, v_0002=0.0003000000000000008, v_0011=0.00010000000000000048, v_0012=0.0003000000000000012, v_0022=0.0009000000000000006, v_0111=0.00010000000000000048, v_0112=0.0003000000000000012, v_0122=0.0009000000000000012, v_0222=0.0027, v_1111=0.00010000000000000048, v_1112=0.0003000000000000012, v_1122=0.0009000000000000012, v_1222=0.0027, v_2222=0.0081),
  t5=SymTensor3d_5(v_00000=-1.0000000000000189e-05, v_00001=-1.0000000000000189e-05, v_00002=-3.0000000000000458e-05, v_00011=-1.0000000000000189e-05, v_00012=-3.0000000000000675e-05, v_00022=-9.000000000000056e-05, v_00111=-1.0000000000000189e-05, v_00112=-3.0000000000000675e-05, v_00122=-9.000000000000067e-05, v_00222=-0.00027000000000000055, v_01111=-1.0000000000000189e-05, v_01112=-3.0000000000000675e-05, v_01122=-9.000000000000067e-05, v_01222=-0.00027000000000000044, v_02222=-0.0008100000000000001, v_11111=-1.0000000000000189e-05, v_11112=-3.0000000000000675e-05, v_11122=-9.000000000000067e-05, v_11222=-0.00027000000000000044, v_12222=-0.0008100000000000001, v_22222=-0.00243)
)

Print the norm of the moment in box B’

1036 def tensor_collect_norm(d):
1037     # detect the type of the tensor collection
1038     if isinstance(d, shamrock.math.SymTensorCollection_f64_0_5):
1039         return (
1040             np.sqrt(d.t0 * d.t0)
1041             + np.sqrt(d.t1.inner(d.t1))
1042             + np.sqrt(d.t2.inner(d.t2)) / 2
1043             + np.sqrt(d.t3.inner(d.t3)) / 6
1044             + np.sqrt(d.t4.inner(d.t4)) / 24
1045             + np.sqrt(d.t5.inner(d.t5)) / 120
1046         )
1047     elif isinstance(d, shamrock.math.SymTensorCollection_f64_0_4):
1048         return (
1049             np.sqrt(d.t0 * d.t0)
1050             + np.sqrt(d.t1.inner(d.t1))
1051             + np.sqrt(d.t2.inner(d.t2)) / 2
1052             + np.sqrt(d.t3.inner(d.t3)) / 6
1053             + np.sqrt(d.t4.inner(d.t4)) / 24
1054         )
1055     elif isinstance(d, shamrock.math.SymTensorCollection_f64_0_3):
1056         return (
1057             np.sqrt(d.t0 * d.t0)
1058             + np.sqrt(d.t1.inner(d.t1))
1059             + np.sqrt(d.t2.inner(d.t2)) / 2
1060             + np.sqrt(d.t3.inner(d.t3)) / 6
1061         )
1062     elif isinstance(d, shamrock.math.SymTensorCollection_f64_0_2):
1063         return np.sqrt(d.t0 * d.t0) + np.sqrt(d.t1.inner(d.t1)) + np.sqrt(d.t2.inner(d.t2)) / 2
1064     elif isinstance(d, shamrock.math.SymTensorCollection_f64_0_1):
1065         return np.sqrt(d.t0 * d.t0) + np.sqrt(d.t1.inner(d.t1))
1066     elif isinstance(d, shamrock.math.SymTensorCollection_f64_0_0):
1067         return np.sqrt(d.t0 * d.t0)
1068     elif isinstance(d, shamrock.math.SymTensorCollection_f64_1_5):
1069         return (
1070             np.sqrt(d.t1.inner(d.t1))
1071             + np.sqrt(d.t2.inner(d.t2)) / 2
1072             + np.sqrt(d.t3.inner(d.t3)) / 6
1073             + np.sqrt(d.t4.inner(d.t4)) / 24
1074             + np.sqrt(d.t5.inner(d.t5)) / 120
1075         )
1076     elif isinstance(d, shamrock.math.SymTensorCollection_f64_1_4):
1077         return (
1078             np.sqrt(d.t1.inner(d.t1))
1079             + np.sqrt(d.t2.inner(d.t2)) / 2
1080             + np.sqrt(d.t3.inner(d.t3)) / 6
1081             + np.sqrt(d.t4.inner(d.t4)) / 24
1082         )
1083     elif isinstance(d, shamrock.math.SymTensorCollection_f64_1_3):
1084         return (
1085             np.sqrt(d.t1.inner(d.t1))
1086             + np.sqrt(d.t2.inner(d.t2)) / 2
1087             + np.sqrt(d.t3.inner(d.t3)) / 6
1088         )
1089     elif isinstance(d, shamrock.math.SymTensorCollection_f64_1_2):
1090         return np.sqrt(d.t1.inner(d.t1)) + np.sqrt(d.t2.inner(d.t2)) / 2
1091     elif isinstance(d, shamrock.math.SymTensorCollection_f64_1_1):
1092         return np.sqrt(d.t1.inner(d.t1))
1093     else:
1094         raise ValueError(f"Unsupported tensor collection type: {type(d)}")
1095
1096
1097 print("Q_n_B norm =", tensor_collect_norm(Q_n_B))
1098 print("Q_n_Bp norm =", tensor_collect_norm(Q_n_Bp))
Q_n_B norm = 1.3268957002522794
Q_n_Bp norm = 1.3932805671178279

Compute the delta between the moments

1102 delta = Q_n_B_offset - Q_n_Bp
1103 print("delta =", delta)
1104
1105
1106 sqdist_t0 = delta.t0 * delta.t0
1107 sqdist_t1 = delta.t1.inner(delta.t1)
1108 sqdist_t2 = delta.t2.inner(delta.t2)
1109 sqdist_t3 = delta.t3.inner(delta.t3)
1110 sqdist_t4 = delta.t4.inner(delta.t4)
1111 sqdist_t5 = delta.t5.inner(delta.t5)
1112 print("sqdist_t0 =", sqdist_t0)
1113 print("sqdist_t1 =", sqdist_t1)
1114 print("sqdist_t2 =", sqdist_t2)
1115 print("sqdist_t3 =", sqdist_t3)
1116 print("sqdist_t4 =", sqdist_t4)
1117 print("sqdist_t5 =", sqdist_t5)
1118
1119 norm_delta = (
1120     np.sqrt(sqdist_t0)
1121     + np.sqrt(sqdist_t1)
1122     + np.sqrt(sqdist_t2) / 2
1123     + np.sqrt(sqdist_t3) / 6
1124     + np.sqrt(sqdist_t4) / 24
1125     + np.sqrt(sqdist_t5) / 120
1126 )
1127 print("norm_delta =", norm_delta)
1128
1129 print("rel error =", tensor_collect_norm(delta) / tensor_collect_norm(Q_n_Bp))
delta = SymTensorCollection_f64_0_5(
  t0=0,
  t1=SymTensor3d_1(v_0=0, v_1=0, v_2=0),
  t2=SymTensor3d_2(v_00=3.469446951953614e-18, v_01=3.469446951953614e-18, v_02=3.469446951953614e-18, v_11=3.469446951953614e-18, v_12=3.469446951953614e-18, v_22=0),
  t3=SymTensor3d_3(v_000=-1.5178830414797062e-18, v_001=-1.5178830414797062e-18, v_002=-2.6020852139652106e-18, v_011=-1.5178830414797062e-18, v_012=-2.6020852139652106e-18, v_022=-1.734723475976807e-18, v_111=-1.5178830414797062e-18, v_112=-2.6020852139652106e-18, v_122=-3.469446951953614e-18, v_222=0),
  t4=SymTensor3d_4(v_0000=5.692061405548898e-19, v_0001=5.692061405548898e-19, v_0002=1.0299920638612292e-18, v_0011=5.692061405548898e-19, v_0012=1.463672932855431e-18, v_0022=1.0842021724855044e-18, v_0111=5.692061405548898e-19, v_0112=1.463672932855431e-18, v_0122=1.6263032587282567e-18, v_0222=8.673617379884035e-19, v_1111=5.692061405548898e-19, v_1112=1.463672932855431e-18, v_1122=1.6263032587282567e-18, v_1222=8.673617379884035e-19, v_2222=0),
  t5=SymTensor3d_5(v_00000=-1.9989977555201488e-19, v_00001=-1.9989977555201488e-19, v_00002=-4.87890977618477e-19, v_00011=-1.9989977555201488e-19, v_00012=-7.047314121155779e-19, v_00022=-6.2341624917916505e-19, v_00111=-1.9989977555201488e-19, v_00112=-7.047314121155779e-19, v_00122=-7.318364664277155e-19, v_00222=-7.047314121155779e-19, v_01111=-1.9989977555201488e-19, v_01112=-7.047314121155779e-19, v_01122=-7.318364664277155e-19, v_01222=-5.963111948670274e-19, v_02222=-3.2526065174565133e-19, v_11111=-1.9989977555201488e-19, v_11112=-7.047314121155779e-19, v_11122=-7.318364664277155e-19, v_11222=-5.963111948670274e-19, v_12222=-3.2526065174565133e-19, v_22222=0)
)
sqdist_t0 = 0.0
sqdist_t1 = 0.0
sqdist_t2 = 9.62964972193618e-35
sqdist_t3 = 1.4482090402130582e-34
sqdist_t4 = 1.3009195980550256e-34
sqdist_t5 = 9.778680365101367e-35
norm_delta = 7.469878656304813e-18
rel error = 5.3613599676891896e-18

We now want to explore the precision of the offset as a function of the order & distance

1134 plt.figure()
1135
1136 for order in range(2, 6):
1137     # set seed
1138     rng = np.random.default_rng(111)
1139
1140     N = 50000
1141
1142     # generate a random set of position in a box of bounds (-1,1)x(-1,1)x(-1,1)
1143     x_j_all = []
1144     for i in range(N):
1145         x_j_all.append((rng.uniform(-1, 1), rng.uniform(-1, 1), rng.uniform(-1, 1)))
1146
1147     box_scale_fact_all = np.linspace(0, 1, N).tolist()
1148
1149     # same for box_1_center
1150     s_B_all = []
1151     for p, box_scale_fact in zip(x_j_all, box_scale_fact_all):
1152         s_B_all.append(
1153             (
1154                 p[0] + box_scale_fact * rng.uniform(-1, 1),
1155                 p[1] + box_scale_fact * rng.uniform(-1, 1),
1156                 p[2] + box_scale_fact * rng.uniform(-1, 1),
1157             )
1158         )
1159
1160     # same for box_2_center
1161     s_Bp_all = []
1162     for p, box_scale_fact in zip(x_j_all, box_scale_fact_all):
1163         s_Bp_all.append(
1164             (
1165                 p[0] + box_scale_fact * rng.uniform(-1, 1),
1166                 p[1] + box_scale_fact * rng.uniform(-1, 1),
1167                 p[2] + box_scale_fact * rng.uniform(-1, 1),
1168             )
1169         )
1170
1171     center_distances = []
1172     rel_errors = []
1173     for x_j, s_B, s_Bp in zip(x_j_all, s_B_all, s_Bp_all):
1174
1175         b_j = (x_j[0] - s_B[0], x_j[1] - s_B[1], x_j[2] - s_B[2])
1176         b_jp = (x_j[0] - s_Bp[0], x_j[1] - s_Bp[1], x_j[2] - s_Bp[2])
1177
1178         if order == 5:
1179             Q_n_B = shamrock.math.SymTensorCollection_f64_0_5.from_vec(b_j)
1180             Q_n_B *= m_j
1181
1182             Q_n_Bp = shamrock.math.SymTensorCollection_f64_0_5.from_vec(b_jp)
1183             Q_n_Bp *= m_j
1184
1185             Q_n_B_offset = shamrock.phys.offset_multipole_5(Q_n_B, s_B, s_Bp)
1186         elif order == 4:
1187             Q_n_B = shamrock.math.SymTensorCollection_f64_0_4.from_vec(b_j)
1188             Q_n_B *= m_j
1189
1190             Q_n_Bp = shamrock.math.SymTensorCollection_f64_0_4.from_vec(b_jp)
1191             Q_n_Bp *= m_j
1192
1193             Q_n_B_offset = shamrock.phys.offset_multipole_4(Q_n_B, s_B, s_Bp)
1194         elif order == 3:
1195             Q_n_B = shamrock.math.SymTensorCollection_f64_0_3.from_vec(b_j)
1196             Q_n_B *= m_j
1197
1198             Q_n_Bp = shamrock.math.SymTensorCollection_f64_0_3.from_vec(b_jp)
1199             Q_n_Bp *= m_j
1200
1201             Q_n_B_offset = shamrock.phys.offset_multipole_3(Q_n_B, s_B, s_Bp)
1202         elif order == 2:
1203             Q_n_B = shamrock.math.SymTensorCollection_f64_0_2.from_vec(b_j)
1204             Q_n_B *= m_j
1205
1206             Q_n_Bp = shamrock.math.SymTensorCollection_f64_0_2.from_vec(b_jp)
1207             Q_n_Bp *= m_j
1208
1209             Q_n_B_offset = shamrock.phys.offset_multipole_2(Q_n_B, s_B, s_Bp)
1210         else:
1211             raise ValueError(f"Unsupported offset order: {order}")
1212
1213         delta = Q_n_B_offset - Q_n_Bp
1214
1215         rel_error = tensor_collect_norm(delta) / tensor_collect_norm(Q_n_B)
1216         rel_errors.append(rel_error)
1217
1218         center_distances.append(np.linalg.norm(np.array(s_B) - np.array(s_Bp)))
1219
1220     plt.scatter(center_distances, rel_errors, s=1, label=f"multipole order = {order}")
1221
1222 plt.xlabel("$\\vert \\vert s_B - s_B'\\vert \\vert$")
1223 plt.ylabel(
1224     "$\\vert \\vert Q_n(s_B) - Q_n(s_B') \\vert \\vert / \\vert \\vert Q_n(s_B) \\vert \\vert$ (relative error) "
1225 )
1226 plt.xscale("log")
1227 plt.yscale("log")
1228 plt.title("Mass moment offset precision")
1229 plt.legend(loc="lower right")
1230 plt.grid()
1231 plt.show()
Mass moment offset precision

As shown the precision is basically the floating point precision. Also as a result we can observe a small precision loss for high orders.

Gravitational moment offset#

Now that we know how to offset the mass moment, we need to offset the gravitational moment. This is required as we will compute gravitational moments for cell-cell interactions, but we still need to propagate that moment from a parent cell to its children until each leaves contains the complete gravitational moment which will be used to compute the resulting force.

We devise a similar setup to the mass moment offset. We define a particle \(x_j\) and a box of center \(s_B\) around it. We then define a box of center \(s_A\) around the particle \(x_i\) as well as a new box of center \(s_A'\).

The goal will be to offset the gravitational moment of the box \(s_A\) to the box \(s_A'\) and then compute the resulting FMM force on \(x_i\) in the new box and compare it to the force given the FMM in the box \(s_A\). If everything is working correctly they should be equals.

1260 def plot_grav_moment_offset(s_A, s_Ap, s_B, box_A_size, box_B_size, x_j):
1261     box_A = shamrock.math.AABB_f64_3(
1262         (
1263             s_A[0] - box_A_size / 2,
1264             s_A[1] - box_A_size / 2,
1265             s_A[2] - box_A_size / 2,
1266         ),
1267         (
1268             s_A[0] + box_A_size / 2,
1269             s_A[1] + box_A_size / 2,
1270             s_A[2] + box_A_size / 2,
1271         ),
1272     )
1273
1274     box_Ap = shamrock.math.AABB_f64_3(
1275         (
1276             s_Ap[0] - box_A_size / 2,
1277             s_Ap[1] - box_A_size / 2,
1278             s_Ap[2] - box_A_size / 2,
1279         ),
1280         (
1281             s_Ap[0] + box_A_size / 2,
1282             s_Ap[1] + box_A_size / 2,
1283             s_Ap[2] + box_A_size / 2,
1284         ),
1285     )
1286
1287     box_B = shamrock.math.AABB_f64_3(
1288         (
1289             s_B[0] - box_B_size / 2,
1290             s_B[1] - box_B_size / 2,
1291             s_B[2] - box_B_size / 2,
1292         ),
1293         (
1294             s_B[0] + box_B_size / 2,
1295             s_B[1] + box_B_size / 2,
1296             s_B[2] + box_B_size / 2,
1297         ),
1298     )
1299
1300     fig = plt.figure()
1301     ax = fig.add_subplot(111, projection="3d")
1302
1303     draw_arrow(ax, s_A, s_B, "purple", "$r = s_B - s_A$")
1304     draw_arrow(ax, s_Ap, s_B, "purple", "$r' = s_B - s_A'$")
1305
1306     ax.scatter(s_A[0], s_A[1], s_A[2], color="black", label="s_A")
1307     ax.scatter(s_Ap[0], s_Ap[1], s_Ap[2], color="black", label="s_Ap")
1308     ax.scatter(s_B[0], s_B[1], s_B[2], color="black", label="s_B")
1309
1310     draw_arrow(ax, s_B, x_j, "black", "$b_j = x_j - s_B$")
1311
1312     ax.scatter(x_j[0], x_j[1], x_j[2], color="red", label="$x_j$")
1313
1314     draw_aabb(ax, box_A, "blue", 0.1)
1315     draw_aabb(ax, box_Ap, "cyan", 0.1)
1316     draw_aabb(ax, box_B, "red", 0.1)
1317
1318     center_view = (0.5, 0.0, 0.0)
1319     view_size = 2.0
1320     ax.set_xlim(center_view[0] - view_size / 2, center_view[0] + view_size / 2)
1321     ax.set_ylim(center_view[1] - view_size / 2, center_view[1] + view_size / 2)
1322     ax.set_zlim(center_view[2] - view_size / 2, center_view[2] + view_size / 2)
1323     ax.set_xlabel("X")
1324     ax.set_ylabel("Y")
1325     ax.set_zlabel("Z")
1326
1327     return ax, rel_error, abs_error
1328
1329
1330 s_B = (0, -0.2, -0.2)
1331 s_A = (1, 0, 0)
1332 s_Ap = (1.1, 0.1, 0.0)
1333
1334 box_B_size = 0.5
1335 box_A_size = 0.5
1336
1337 x_j = (0.2, 0.0, -0.5)
1338 x_i = (1.2, 0.2, 0.0)
1339 m_j = 1
1340 m_i = 1
1341
1342 plot_grav_moment_offset(s_A, s_Ap, s_B, box_A_size, box_B_size, x_j)
1343
1344 plt.title("Mass moment offset illustration")
1345 plt.legend(loc="center left", bbox_to_anchor=(-0.3, 0.5))
1346 plt.show()
1347
1348 b_j = (x_j[0] - s_B[0], x_j[1] - s_B[1], x_j[2] - s_B[2])
1349 r = (s_B[0] - s_A[0], s_B[1] - s_A[1], s_B[2] - s_A[2])
1350 rp = (s_B[0] - s_Ap[0], s_B[1] - s_Ap[1], s_B[2] - s_Ap[2])
Mass moment offset illustration
Q_n_B = SymTensorCollection_f64_0_4(
  t0=1,
  t1=SymTensor3d_1(v_0=0.2, v_1=0.2, v_2=-0.3),
  t2=SymTensor3d_2(v_00=0.04000000000000001, v_01=0.04000000000000001, v_02=-0.06, v_11=0.04000000000000001, v_12=-0.06, v_22=0.09),
  t3=SymTensor3d_3(v_000=0.008000000000000002, v_001=0.008000000000000002, v_002=-0.012, v_011=0.008000000000000002, v_012=-0.012, v_022=0.018, v_111=0.008000000000000002, v_112=-0.012, v_122=0.018, v_222=-0.027),
  t4=SymTensor3d_4(v_0000=0.0016000000000000005, v_0001=0.0016000000000000005, v_0002=-0.0024000000000000002, v_0011=0.0016000000000000005, v_0012=-0.0024000000000000002, v_0022=0.0036, v_0111=0.0016000000000000005, v_0112=-0.0024000000000000002, v_0122=0.0036, v_0222=-0.0054, v_1111=0.0016000000000000005, v_1112=-0.0024000000000000002, v_1122=0.0036, v_1222=-0.0054, v_2222=0.0081)
)
1359 D_n = shamrock.phys.green_func_grav_cartesian_1_5(r)
1360 dM_k = shamrock.phys.get_dM_mat_5(D_n, Q_n_B)
1361 # print("D_n =",D_n)
1362 print("dM_k =", dM_k)
dM_k = SymTensorCollection_f64_1_5(
  t1=SymTensor3d_1(v_0=0.9330692614896893, v_1=-0.00676020905615491, v_2=0.5975337326753848),
  t2=SymTensor3d_2(v_00=-1.298112911867752, v_01=0.11610754537124784, v_02=-1.8134165309956711, v_11=1.2391425006660395, v_12=0.007638654300740003, v_22=0.05897041120171296),
  t3=SymTensor3d_3(v_000=3.4412986364200324, v_001=-0.2809327303938822, v_002=7.571603890766815, v_011=-4.260501873206062, v_012=0.7061511531350734, v_022=0.819203236786024, v_111=-0.23000836838894867, v_112=-2.368831572596142, v_122=0.5109410987828296, v_222=-5.202772318170674),
  t4=SymTensor3d_4(v_0000=-18.407459386049837, v_0001=-6.722015784651176, v_0002=-26.667390903250002, v_0011=15.484401006966687, v_0012=-6.501343549296469, v_0022=2.923058379083166, v_0111=7.061511531350736, v_0112=6.874788870665981, v_0122=-0.33949574669955473, v_0222=19.79260203258403, v_1111=-12.975527438856975, v_1112=3.5477305530103456, v_1122=-2.5088735681097085, v_1222=2.9536129962861244, v_2222=-0.41418481097345605),
  t5=SymTensor3d_5(v_00000=48.09523078243683, v_00001=41.53164634624548, v_00002=41.53164634624548, v_00011=-24.04761539121845, v_00012=15.843134845979208, v_00022=-24.04761539121845, v_00111=-33.327165801006274, v_00112=-8.204480545239235, v_00122=-8.204480545239235, v_00222=-33.327165801006274, v_01111=17.54061357947698, v_01112=-7.921567422989607, v_01122=6.507001811741461, v_01222=-7.921567422989607, v_02222=17.54061357947698, v_11111=28.630807971662435, v_11112=3.508122715895396, v_11122=4.696357829343838, v_11222=4.696357829343838, v_12222=3.508122715895396, v_22222=28.630807971662435)
)
1365 Dp_n = shamrock.phys.green_func_grav_cartesian_1_5(rp)
1366 dMp_k = shamrock.phys.get_dM_mat_5(Dp_n, Q_n_B)
1367 # print("Dp_n =",Dp_n)
1368 print("dMp_k =", dMp_k)
dMp_k = SymTensorCollection_f64_1_5(
  t1=SymTensor3d_1(v_0=0.8051957104860917, v_1=0.0859156812420047, v_2=0.45554150189781367),
  t2=SymTensor3d_2(v_00=-1.1506350288987228, v_01=-0.18473251757367656, v_02=-1.2544427285969801, v_11=0.9166504977909566, v_12=-0.14449625923034512, v_22=0.2339845311077664),
  t3=SymTensor3d_3(v_000=2.785021505417446, v_001=0.8733332982608633, v_002=4.485575659227913, v_011=-2.6188090665288035, v_012=0.9963229064995676, v_022=-0.166212438888643, v_111=-1.0489286383915493, v_112=-1.2271271607572491, v_122=0.1755953401306858, v_222=-3.2584484984706643),
  t4=SymTensor3d_4(v_0000=-10.165140797758387, v_0001=-7.280740259644215, v_0002=-13.378828262430224, v_0011=7.011559807338903, v_0012=-5.056011305707431, v_0022=3.153580990419484, v_0111=6.6880614626113, v_0112=2.736559558321528, v_0122=0.592678797032914, v_0222=10.642268704108691, v_1111=-5.468435464111547, v_1112=2.59084325799438, v_1122=-1.5431243432273574, v_1222=2.4651680477130498, v_2222=-1.6104566471921278),
  t5=SymTensor3d_5(v_00000=18.72060355756975, v_00001=26.56716119514329, v_00002=17.71144079676219, v_00011=-5.393848537488466, v_00012=9.5194877791114, v_00022=-13.3267550200813, v_00111=-20.376497872789148, v_00112=-2.1221000974285835, v_00122=-6.190663322354132, v_00222=-15.5893406993336, v_01111=2.744597589049272, v_01112=-4.447970272335893, v_01122=2.649250948439194, v_01222=-5.071517506775504, v_02222=10.677504071642106, v_11111=17.09788111542832, v_11112=0.499017743463504, v_11122=3.2786167573608305, v_11222=1.6230823539650792, v_12222=2.9120465649933016, v_22222=13.966258345368523)
)

Offset the grav moment to dMp_k

1372 dM_k_offset = shamrock.phys.offset_dM_mat_5(dM_k, s_A, s_Ap)
1373 print("dM_k_offset =", dM_k_offset)
dM_k_offset = SymTensorCollection_f64_1_5(
  t1=SymTensor3d_1(v_0=0.8102626162966926, v_1=0.09094581810461017, v_2=0.44647934387825156),
  t2=SymTensor3d_2(v_00=-1.0527084113659793, v_01=-0.20033644012740712, v_02=-1.140196465290454, v_11=0.8661215489799035, v_12=-0.10948737831060629, v_22=0.18658686238607547),
  t3=SymTensor3d_3(v_000=1.4639056597684772, v_001=0.39585204065168006, v_002=4.579797622976988, v_011=-2.3717172864430887, v_012=0.7010587169345798, v_022=0.9078116266746078, v_111=-0.6694856124915215, v_112=-1.4292770936051242, v_122=0.27363357183984083, v_222=-3.1505205293718657),
  t4=SymTensor3d_4(v_0000=-9.4447716731816, v_0001=-4.973612689148469, v_0002=-20.92991278402753, v_0011=9.746922887744212, v_0012=-5.73747811922247, v_0022=-0.30215121456260485, v_0111=5.482856309197803, v_0112=5.262184073843096, v_0122=-0.5092436200493328, v_0222=15.667728710184438, v_1111=-8.358385283743033, v_1112=3.106386082300924, v_1122=-1.388537604001178, v_1222=2.631092036921547, v_2222=1.6906888185637832),
  t5=SymTensor3d_5(v_00000=48.09523078243683, v_00001=41.53164634624548, v_00002=41.53164634624548, v_00011=-24.04761539121845, v_00012=15.843134845979208, v_00022=-24.04761539121845, v_00111=-33.327165801006274, v_00112=-8.204480545239235, v_00122=-8.204480545239235, v_00222=-33.327165801006274, v_01111=17.54061357947698, v_01112=-7.921567422989607, v_01122=6.507001811741461, v_01222=-7.921567422989607, v_02222=17.54061357947698, v_11111=28.630807971662435, v_11112=3.508122715895396, v_11122=4.696357829343838, v_11222=4.696357829343838, v_12222=3.508122715895396, v_22222=28.630807971662435)
)

Weirdly we can see that for dMk are different even though they will be contracted with the same a_k This is normal because we translate the moment dMk into the box A’, so even if we estimate the force in A’ after the translation we will still get the same force as the one we had in A before the translation. Which is arguably what we want XD.

1380 delta = dM_k_offset - dMp_k
1381
1382 print("delta =", delta)
1383 print("sqdist_t1 =", np.sqrt(delta.t1.inner(delta.t1)))
1384 print("sqdist_t2 =", np.sqrt(delta.t2.inner(delta.t2)) / 2)
1385 print("sqdist_t3 =", np.sqrt(delta.t3.inner(delta.t3)) / 6)
1386 print("sqdist_t4 =", np.sqrt(delta.t4.inner(delta.t4)) / 24)
1387 print("sqdist_t5 =", np.sqrt(delta.t5.inner(delta.t5)) / 120)
1388 print("(norm) =", tensor_collect_norm(delta))
delta = SymTensorCollection_f64_1_5(
  t1=SymTensor3d_1(v_0=0.005066905810600875, v_1=0.005030136862605464, v_2=-0.009062158019562117),
  t2=SymTensor3d_2(v_00=0.09792661753274357, v_01=-0.015603922553730554, v_02=0.11424626330652621, v_11=-0.05052894881105319, v_12=0.03500888091973883, v_22=-0.04739766872169093),
  t3=SymTensor3d_3(v_000=-1.321115845648969, v_001=-0.4774812576091832, v_002=0.09422196374907532, v_011=0.24709178008571486, v_012=-0.2952641895649878, v_022=1.074024065563251, v_111=0.37944302590002776, v_112=-0.20214993284787508, v_122=0.09803823170915502, v_222=0.10792796909879865),
  t4=SymTensor3d_4(v_0000=0.720369124576786, v_0001=2.307127570495746, v_0002=-7.551084521597305, v_0011=2.7353630804053086, v_0012=-0.6814668135150397, v_0022=-3.455732204982089, v_0111=-1.2052051534134964, v_0112=2.5256245155215677, v_0122=-1.1019224170822468, v_0222=5.025460006075747, v_1111=-2.889949819631486, v_1112=0.5155428243065439, v_1122=0.15458673922617927, v_1222=0.16592398920849716, v_2222=3.301145465755911),
  t5=SymTensor3d_5(v_00000=29.37462722486708, v_00001=14.964485151102192, v_00002=23.82020554948329, v_00011=-18.653766853729984, v_00012=6.323647066867808, v_00022=-10.72086037113715, v_00111=-12.950667928217126, v_00112=-6.082380447810651, v_00122=-2.0138172228851037, v_00222=-17.737825101672673, v_01111=14.796015990427707, v_01112=-3.473597150653714, v_01122=3.8577508633022672, v_01222=-2.850049916214103, v_02222=6.8631095078348725, v_11111=11.532926856234116, v_11112=3.009104972431892, v_11122=1.4177410719830075, v_11222=3.073275475378759, v_12222=0.5960761509020944, v_22222=14.664549626293912)
)
sqdist_t1 = 0.011536833158261293
sqdist_t2 = 0.10420168152823184
sqdist_t3 = 0.4387428684956316
sqdist_t4 = 1.0125236327407858
sqdist_t5 = 1.1484704299114894
(norm) = 2.7154754458344
1392 a_i = (x_i[0] - s_A[0], x_i[1] - s_A[1], x_i[2] - s_A[2])
1393 a_ip = (x_i[0] - s_Ap[0], x_i[1] - s_Ap[1], x_i[2] - s_Ap[2])
1394
1395 a_k = shamrock.math.SymTensorCollection_f64_0_4.from_vec(a_i)
1396 a_kp = shamrock.math.SymTensorCollection_f64_0_4.from_vec(a_ip)
1397
1398 print("a_k  =", a_k)
1399 print("a_kp =", a_kp)
a_k  = SymTensorCollection_f64_0_4(
  t0=1,
  t1=SymTensor3d_1(v_0=0.19999999999999996, v_1=0.2, v_2=0),
  t2=SymTensor3d_2(v_00=0.03999999999999998, v_01=0.039999999999999994, v_02=0, v_11=0.04000000000000001, v_12=0, v_22=0),
  t3=SymTensor3d_3(v_000=0.007999999999999995, v_001=0.007999999999999997, v_002=0, v_011=0.008, v_012=0, v_022=0, v_111=0.008000000000000002, v_112=0, v_122=0, v_222=0),
  t4=SymTensor3d_4(v_0000=0.0015999999999999986, v_0001=0.001599999999999999, v_0002=0, v_0011=0.0015999999999999996, v_0012=0, v_0022=0, v_0111=0.0016, v_0112=0, v_0122=0, v_0222=0, v_1111=0.0016000000000000005, v_1112=0, v_1122=0, v_1222=0, v_2222=0)
)
a_kp = SymTensorCollection_f64_0_4(
  t0=1,
  t1=SymTensor3d_1(v_0=0.09999999999999987, v_1=0.1, v_2=0),
  t2=SymTensor3d_2(v_00=0.009999999999999974, v_01=0.009999999999999988, v_02=0, v_11=0.010000000000000002, v_12=0, v_22=0),
  t3=SymTensor3d_3(v_000=0.0009999999999999961, v_001=0.0009999999999999974, v_002=0, v_011=0.000999999999999999, v_012=0, v_022=0, v_111=0.0010000000000000002, v_112=0, v_122=0, v_222=0),
  t4=SymTensor3d_4(v_0000=9.999999999999948e-05, v_0001=9.999999999999961e-05, v_0002=0, v_0011=9.999999999999976e-05, v_0012=0, v_0022=0, v_0111=9.99999999999999e-05, v_0112=0, v_0122=0, v_0222=0, v_1111=0.00010000000000000003, v_1112=0, v_1122=0, v_1222=0, v_2222=0)
)
1402 result = shamrock.phys.contract_grav_moment_to_force_5(a_k, dM_k)
1403 resultp = shamrock.phys.contract_grav_moment_to_force_5(a_kp, dMp_k)
1404 result_offset = shamrock.phys.contract_grav_moment_to_force_5(a_kp, dM_k_offset)
1405
1406 print("force_i         =", -Gconst * np.array(result))
1407 print("force_ip        =", -Gconst * np.array(resultp))
1408 print("force_ip_offset =", -Gconst * np.array(result_offset), "force_i translated to A'")
force_i         = [-0.68591296 -0.13718259 -0.34118049]
force_ip        = [-0.68056702 -0.13639473 -0.3390527 ]
force_ip_offset = [-0.68591296 -0.13718259 -0.34118049] force_i translated to A'

As expected the delta is almost null

delta_f = 3.566330011800396e-17

Let’s modify FMM in a box to add the translation of the box A

1419 def test_grav_moment_offset(x_i, x_j, s_A, s_Ap, s_B, m_j, order, do_print):
1420
1421     b_j = (x_j[0] - s_B[0], x_j[1] - s_B[1], x_j[2] - s_B[2])
1422     r = (s_B[0] - s_A[0], s_B[1] - s_A[1], s_B[2] - s_A[2])
1423     a_i = (x_i[0] - s_A[0], x_i[1] - s_A[1], x_i[2] - s_A[2])
1424     a_ip = (x_i[0] - s_Ap[0], x_i[1] - s_Ap[1], x_i[2] - s_Ap[2])
1425
1426     if do_print:
1427         print("x_i =", x_i)
1428         print("x_j =", x_j)
1429         print("s_A =", s_A)
1430         print("s_Ap =", s_Ap)
1431         print("s_B =", s_B)
1432         print("b_j =", b_j)
1433         print("r =", r)
1434         print("a_i =", a_i)
1435
1436     # compute the tensor product of the displacment
1437     if order == 1:
1438         Q_n_B = shamrock.math.SymTensorCollection_f64_0_0.from_vec(b_j)
1439     elif order == 2:
1440         Q_n_B = shamrock.math.SymTensorCollection_f64_0_1.from_vec(b_j)
1441     elif order == 3:
1442         Q_n_B = shamrock.math.SymTensorCollection_f64_0_2.from_vec(b_j)
1443     elif order == 4:
1444         Q_n_B = shamrock.math.SymTensorCollection_f64_0_3.from_vec(b_j)
1445     elif order == 5:
1446         Q_n_B = shamrock.math.SymTensorCollection_f64_0_4.from_vec(b_j)
1447     else:
1448         raise ValueError("Invalid order")
1449
1450     # multiply by mass to get the mass moment
1451     Q_n_B *= m_j
1452
1453     if do_print:
1454         print("Q_n_B =", Q_n_B)
1455
1456     # green function gradients
1457     if order == 1:
1458         D_n = shamrock.phys.green_func_grav_cartesian_1_1(r)
1459     elif order == 2:
1460         D_n = shamrock.phys.green_func_grav_cartesian_1_2(r)
1461     elif order == 3:
1462         D_n = shamrock.phys.green_func_grav_cartesian_1_3(r)
1463     elif order == 4:
1464         D_n = shamrock.phys.green_func_grav_cartesian_1_4(r)
1465     elif order == 5:
1466         D_n = shamrock.phys.green_func_grav_cartesian_1_5(r)
1467     else:
1468         raise ValueError("Invalid order")
1469
1470     if do_print:
1471         print("D_n =", D_n)
1472
1473     if order == 1:
1474         dM_k = shamrock.phys.get_dM_mat_1(D_n, Q_n_B)
1475     elif order == 2:
1476         dM_k = shamrock.phys.get_dM_mat_2(D_n, Q_n_B)
1477     elif order == 3:
1478         dM_k = shamrock.phys.get_dM_mat_3(D_n, Q_n_B)
1479     elif order == 4:
1480         dM_k = shamrock.phys.get_dM_mat_4(D_n, Q_n_B)
1481     elif order == 5:
1482         dM_k = shamrock.phys.get_dM_mat_5(D_n, Q_n_B)
1483     else:
1484         raise ValueError("Invalid order")
1485
1486     if do_print:
1487         print("dM_k =", dM_k)
1488
1489     if order == 5:
1490         dM_k_offset = shamrock.phys.offset_dM_mat_5(dM_k, s_A, s_Ap)
1491     elif order == 4:
1492         dM_k_offset = shamrock.phys.offset_dM_mat_4(dM_k, s_A, s_Ap)
1493     elif order == 3:
1494         dM_k_offset = shamrock.phys.offset_dM_mat_3(dM_k, s_A, s_Ap)
1495     elif order == 2:
1496         dM_k_offset = shamrock.phys.offset_dM_mat_2(dM_k, s_A, s_Ap)
1497     else:
1498         raise ValueError("Invalid order")
1499
1500     if do_print:
1501         print("dM_k_offset =", dM_k_offset)
1502
1503     if order == 1:
1504         a_k = shamrock.math.SymTensorCollection_f64_0_0.from_vec(a_i)
1505     elif order == 2:
1506         a_k = shamrock.math.SymTensorCollection_f64_0_1.from_vec(a_i)
1507     elif order == 3:
1508         a_k = shamrock.math.SymTensorCollection_f64_0_2.from_vec(a_i)
1509     elif order == 4:
1510         a_k = shamrock.math.SymTensorCollection_f64_0_3.from_vec(a_i)
1511     elif order == 5:
1512         a_k = shamrock.math.SymTensorCollection_f64_0_4.from_vec(a_i)
1513     else:
1514         raise ValueError("Invalid order")
1515
1516     if do_print:
1517         print("a_k =", a_k)
1518
1519     if order == 1:
1520         a_kp = shamrock.math.SymTensorCollection_f64_0_0.from_vec(a_ip)
1521     elif order == 2:
1522         a_kp = shamrock.math.SymTensorCollection_f64_0_1.from_vec(a_ip)
1523     elif order == 3:
1524         a_kp = shamrock.math.SymTensorCollection_f64_0_2.from_vec(a_ip)
1525     elif order == 4:
1526         a_kp = shamrock.math.SymTensorCollection_f64_0_3.from_vec(a_ip)
1527     elif order == 5:
1528         a_kp = shamrock.math.SymTensorCollection_f64_0_4.from_vec(a_ip)
1529     else:
1530         raise ValueError("Invalid order")
1531
1532     if do_print:
1533         print("a_kp =", a_kp)
1534
1535     if order == 1:
1536         result = shamrock.phys.contract_grav_moment_to_force_1(a_k, dM_k)
1537     elif order == 2:
1538         result = shamrock.phys.contract_grav_moment_to_force_2(a_k, dM_k)
1539     elif order == 3:
1540         result = shamrock.phys.contract_grav_moment_to_force_3(a_k, dM_k)
1541     elif order == 4:
1542         result = shamrock.phys.contract_grav_moment_to_force_4(a_k, dM_k)
1543     elif order == 5:
1544         result = shamrock.phys.contract_grav_moment_to_force_5(a_k, dM_k)
1545     else:
1546         raise ValueError("Invalid order")
1547
1548     Gconst = 1  # let's just set the grav constant to 1
1549     force_i = -Gconst * np.array(result)
1550     if do_print:
1551         print("force_i =", force_i)
1552
1553     if order == 1:
1554         result_offset = shamrock.phys.contract_grav_moment_to_force_1(a_kp, dM_k_offset)
1555     elif order == 2:
1556         result_offset = shamrock.phys.contract_grav_moment_to_force_2(a_kp, dM_k_offset)
1557     elif order == 3:
1558         result_offset = shamrock.phys.contract_grav_moment_to_force_3(a_kp, dM_k_offset)
1559     elif order == 4:
1560         result_offset = shamrock.phys.contract_grav_moment_to_force_4(a_kp, dM_k_offset)
1561     elif order == 5:
1562         result_offset = shamrock.phys.contract_grav_moment_to_force_5(a_kp, dM_k_offset)
1563     else:
1564         raise ValueError("Invalid order")
1565
1566     force_i_offset = -Gconst * np.array(result_offset)
1567     if do_print:
1568         print("force_i_offset =", force_i_offset)
1569
1570     b_A_size = np.linalg.norm(np.array(s_A) - np.array(x_i))
1571     b_B_size = np.linalg.norm(np.array(s_B) - np.array(x_j))
1572     b_dist = np.linalg.norm(np.array(s_A) - np.array(s_B))
1573
1574     angle = (b_A_size + b_B_size) / b_dist
1575
1576     delta_A = np.linalg.norm(np.array(s_A) - np.array(s_Ap))
1577
1578     if do_print:
1579         print("b_A_size =", b_A_size)
1580         print("b_B_size =", b_B_size)
1581         print("b_dist =", b_dist)
1582         print("angle =", angle)
1583
1584     return force_i, force_i_offset, angle, delta_A

Let test for many different parameters. For clarification a perfect result here is that the translated dMk contracted with the new displacment ak_p give the same result as the original expansion (which it does ;) ).

1591 plt.figure()
1592 for order in range(2, 6):
1593     print("--------------------------------")
1594     print(f"Running FMM order = {order}")
1595     print("--------------------------------")
1596
1597     # set seed
1598     rng = np.random.default_rng(111)
1599
1600     N = 50000
1601
1602     # generate a random set of position in a box of bounds (-1,1)x(-1,1)x(-1,1)
1603     x_i_all = []
1604     for i in range(N):
1605         x_i_all.append((rng.uniform(-1, 1), rng.uniform(-1, 1), rng.uniform(-1, 1)))
1606
1607     # same for x_j
1608     x_j_all = []
1609     for i in range(N):
1610         x_j_all.append((rng.uniform(-1, 1), rng.uniform(-1, 1), rng.uniform(-1, 1)))
1611
1612     box_scale_fact_all = np.linspace(0, 0.1, N).tolist()
1613
1614     # same for box_1_center
1615     s_A_all = []
1616     s_Ap_all = []
1617     for p, box_scale_fact in zip(x_i_all, box_scale_fact_all):
1618         s_A_all.append(
1619             (
1620                 p[0] + box_scale_fact * rng.uniform(-1, 1),
1621                 p[1] + box_scale_fact * rng.uniform(-1, 1),
1622                 p[2] + box_scale_fact * rng.uniform(-1, 1),
1623             )
1624         )
1625         s_Ap_all.append(
1626             (
1627                 p[0] + box_scale_fact * rng.uniform(-1, 1),
1628                 p[1] + box_scale_fact * rng.uniform(-1, 1),
1629                 p[2] + box_scale_fact * rng.uniform(-1, 1),
1630             )
1631         )
1632
1633     # same for box_2_center
1634     s_B_all = []
1635     for p, box_scale_fact in zip(x_j_all, box_scale_fact_all):
1636         s_B_all.append(
1637             (
1638                 p[0] + box_scale_fact * rng.uniform(-1, 1),
1639                 p[1] + box_scale_fact * rng.uniform(-1, 1),
1640                 p[2] + box_scale_fact * rng.uniform(-1, 1),
1641             )
1642         )
1643
1644     angles = []
1645     delta_A_all = []
1646     rel_errors = []
1647
1648     for x_i, x_j, s_A, s_Ap, s_B in zip(x_i_all, x_j_all, s_A_all, s_Ap_all, s_B_all):
1649
1650         force_i, force_i_offset, angle, delta_A = test_grav_moment_offset(
1651             x_i, x_j, s_A, s_Ap, s_B, m_j, order, do_print=False
1652         )
1653
1654         abs_error = np.linalg.norm(force_i_offset - force_i)
1655         rel_error = abs_error / np.linalg.norm(force_i)
1656
1657         b_A_size = np.linalg.norm(np.array(s_A) - np.array(x_i))
1658         b_B_size = np.linalg.norm(np.array(s_B) - np.array(x_j))
1659         b_dist = np.linalg.norm(np.array(s_A) - np.array(s_B))
1660         angle = (b_A_size + b_B_size) / b_dist
1661
1662         if angle > 5.0 or angle < 1e-4:
1663             continue
1664
1665         angles.append(angle)
1666         delta_A_all.append(delta_A)
1667         rel_errors.append(rel_error)
1668
1669     print(f"Computed for {len(angles)} cases")
1670
1671     plt.scatter(angles, rel_errors, s=1, label=f"FMM order = {order}")
1672
1673
1674 plt.xlabel("Angle")
1675 plt.ylabel("$|f_{\\rm fmm} - f_{\\rm fmm, offset}| / |f_{\\rm fmm}|$ (Relative error)")
1676 plt.xscale("log")
1677 plt.yscale("log")
1678 plt.title("Grav moment translation error")
1679 plt.legend(loc="lower right")
1680 plt.grid()
1681 plt.show()
Grav moment translation error
--------------------------------
Running FMM order = 2
--------------------------------
Computed for 49965 cases
--------------------------------
Running FMM order = 3
--------------------------------
Computed for 49965 cases
--------------------------------
Running FMM order = 4
--------------------------------
Computed for 49965 cases
--------------------------------
Running FMM order = 5
--------------------------------
Computed for 49965 cases

Small note on multipole method (Without FMM)#

In some ways a MM method is a FMM where there is no box A. If we reuse the formula at the start of this page we get:

\[\mathbf{b}_j = \mathbf{x}_j - \mathbf{s}_b\]

and the distance between the centers of the boxes is:

\[\mathbf{r} = \mathbf{s}_b - \mathbf{x}_i\]

This implies that the distance between the two particles is:

\[\mathbf{x}_j - \mathbf{x}_i = \mathbf{r} + \mathbf{b}_j\]
\[\begin{split}\phi(\mathbf{x}_i) &= - \mathcal{G}\iiint_V \rho(\mathbf{x}_j) G(\mathbf{x}_j - \mathbf{x}_i) ~{\rm d}^3\mathbf{x}_j\\ &\simeq - \mathcal{G}\iiint_V \rho(\mathbf{x}_j) \sum_{n = 0}^p \frac{1}{n!} \nabla_r^{(n)} G(\mathbf{r}) \cdot \mathbf{b}_j^{(n)} ~{\rm d}^3\mathbf{x}_j\\ &= - \mathcal{G}\sum_{n = 0}^p \frac{1}{n!} \underbrace{\nabla_r^{(n)} G(\mathbf{r})}_{D_n} \cdot \underbrace{\left(\iiint_V \rho(\mathbf{x}_j) \mathbf{b}_j^{(n)}~{\rm d}^3\mathbf{x}_j\right)}_{Q_n^B},\end{split}\]

where \(D_n\) are the gradients of the Green function and \(Q^B_n\) are the moments of the mass distribution. Hence, the force can then be written as follows:

\[\begin{split}f_{\rm g}(\mathbf{x}_i) &= -\nabla_i \phi(\mathbf{x}_i)\\ &= \mathcal{G}\iiint_V \rho(\mathbf{x}_j) \nabla_i G(\mathbf{x}_j - \mathbf{x}_i) ~{\rm d}^3\mathbf{x}_j\\ &= - \mathcal{G}\iiint_V \rho(\mathbf{x}_j) \nabla_j G(\mathbf{x}_j - \mathbf{x}_i) ~{\rm d}^3\mathbf{x}_j\\ &= - \mathcal{G}\sum_{n = 0}^p \frac{1}{n!} \nabla_r {D_n} \cdot {Q_n^B}\\ &= -\mathcal{G} \sum_{n = 0}^p \frac{1}{n!} {D_{n+1}} \cdot {Q_n^B} \\ &= -\mathcal{G} \sum_{n = 0}^p \frac{1}{n!} {Q_n^B} \cdot {D_{n+1}}\end{split}\]

As we can see, the expression of the MM force is litteraly the same contraction as the end of the FMM. Essentially in MM the green function moments are the equivalent of \(dM_k\) in FMM. So we can use the same final function but put the mass moments instead of box a displacements.

1729 s_B = (0, 0, 0)
1730
1731 box_B_size = 0.5
1732
1733 x_j = (0.2, 0.2, 0.0)
1734 x_i = (1.2, 0.2, 0.0)
1735 m_j = 1
1736 m_i = 1
1737
1738 b_j = (x_j[0] - s_B[0], x_j[1] - s_B[1], x_j[2] - s_B[2])
1739 r = (s_B[0] - x_i[0], s_B[1] - x_i[1], s_B[2] - x_i[2])
Q_n_B = SymTensorCollection_f64_0_4(
  t0=1,
  t1=SymTensor3d_1(v_0=0.2, v_1=0.2, v_2=0),
  t2=SymTensor3d_2(v_00=0.04000000000000001, v_01=0.04000000000000001, v_02=0, v_11=0.04000000000000001, v_12=0, v_22=0),
  t3=SymTensor3d_3(v_000=0.008000000000000002, v_001=0.008000000000000002, v_002=0, v_011=0.008000000000000002, v_012=0, v_022=0, v_111=0.008000000000000002, v_112=0, v_122=0, v_222=0),
  t4=SymTensor3d_4(v_0000=0.0016000000000000005, v_0001=0.0016000000000000005, v_0002=0, v_0011=0.0016000000000000005, v_0012=0, v_0022=0, v_0111=0.0016000000000000005, v_0112=0, v_0122=0, v_0222=0, v_1111=0.0016000000000000005, v_1112=0, v_1122=0, v_1222=0, v_2222=0)
)
D_n = SymTensorCollection_f64_1_5(
  t1=SymTensor3d_1(v_0=0.6664823809676648, v_1=0.11108039682794413, v_2=-0),
  t2=SymTensor3d_2(v_00=1.0657713749708153, v_01=0.27019555985175603, v_02=-0, v_11=-0.5103693908310947, v_12=-0, v_22=-0.5554019841397206),
  t3=SymTensor3d_3(v_000=2.5193910310501564, v_001=0.8702244382612861, v_002=0, v_011=-1.1684132317913773, v_012=-0, v_022=-1.3509777992587801, v_111=-0.6450614717181563, v_112=0, v_122=-0.22516296654313003, v_222=0),
  t4=SymTensor3d_4(v_0000=7.818204247354045, v_0001=3.4785951368788894, v_0002=0, v_0011=-3.467082056047611, v_0012=-0, v_0022=-4.35112219130643, v_0111=-2.565772299541876, v_0112=0, v_0122=-0.9128228373370134, v_0222=0, v_1111=2.4934043628881306, v_1112=0, v_1122=0.9736776931594812, v_1222=0, v_2222=3.37744449814695),
  t5=SymTensor3d_5(v_00000=29.815100928798046, v_00001=16.56450061106264, v_00002=-0, v_00011=-12.422125244403624, v_00012=-0, v_00022=-17.392975684394447, v_00111=-12.144299934768547, v_00112=0, v_00122=-4.420200676294097, v_00222=0, v_01111=8.72149212006438, v_01112=0, v_01122=3.7006331243392436, v_01222=0, v_02222=13.692342560055202, v_11111=10.006156351816982, v_11112=-0, v_11122=2.138143582951563, v_11222=0, v_12222=2.2820570933425337, v_22222=0)
)
1751 result = shamrock.phys.contract_grav_moment_to_force_5(Q_n_B, D_n)
1752 Gconst = 1  # let's just set the grav constant to 1
1753 force_i = -Gconst * np.array(result)
1754 print("force_i =", force_i)
force_i = [-1.00133257e+00 -5.70430926e-04 -0.00000000e+00]

We can check that this is equivalent to the FMM with s_A = (0,0,0)

1758 dM_k = shamrock.phys.get_dM_mat_5(D_n, Q_n_B)
1759 print("dM_k =", dM_k)
1760 a_k = shamrock.math.SymTensorCollection_f64_0_4.from_vec((0, 0, 0))
1761 print("a_k =", a_k)
1762 force_i_fmm_sA_null = shamrock.phys.contract_grav_moment_to_force_5(a_k, dM_k)
1763 Gconst = 1  # let's just set the grav constant to 1
1764 force_i_fmm_sA_null = -Gconst * np.array(force_i_fmm_sA_null)
1765 print("force_i_fmm_sA_null =", force_i_fmm_sA_null)
dM_k = SymTensorCollection_f64_1_5(
  t1=SymTensor3d_1(v_0=1.0013325726540552, v_1=0.000570430925742737, v_2=0),
  t2=SymTensor3d_2(v_00=-2.009991287593064, v_01=-0.025579931908720897, v_02=0, v_11=1.012081300493465, v_12=0, v_22=0.9979099870995988),
  t3=SymTensor3d_3(v_000=5.7891904460271375, v_001=0.46404605817727873, v_002=0, v_011=-2.9347687627868018, v_012=0, v_022=-2.8544216832403366, v_111=-0.3534382459053615, v_112=0, v_122=-0.11060781227191739, v_222=0),
  t4=SymTensor3d_4(v_0000=-17.094124555326182, v_0001=-4.307070210210693, v_0002=0, v_0011=8.380367091882045, v_0012=0, v_0022=8.71375746344414, v_0111=3.2503338624827096, v_0112=-0, v_0122=1.056736347727984, v_0222=-0, v_1111=-6.238934057264403, v_1112=-0, v_1122=-2.1414330346176427, v_1222=-0, v_2222=-6.572324428826498),
  t5=SymTensor3d_5(v_00000=29.815100928798046, v_00001=16.56450061106264, v_00002=-0, v_00011=-12.422125244403624, v_00012=-0, v_00022=-17.392975684394447, v_00111=-12.144299934768547, v_00112=0, v_00122=-4.420200676294097, v_00222=0, v_01111=8.72149212006438, v_01112=0, v_01122=3.7006331243392436, v_01222=0, v_02222=13.692342560055202, v_11111=10.006156351816982, v_11112=-0, v_11122=2.138143582951563, v_11222=0, v_12222=2.2820570933425337, v_22222=0)
)
a_k = SymTensorCollection_f64_0_4(
  t0=1,
  t1=SymTensor3d_1(v_0=0, v_1=0, v_2=0),
  t2=SymTensor3d_2(v_00=0, v_01=0, v_02=0, v_11=0, v_12=0, v_22=0),
  t3=SymTensor3d_3(v_000=0, v_001=0, v_002=0, v_011=0, v_012=0, v_022=0, v_111=0, v_112=0, v_122=0, v_222=0),
  t4=SymTensor3d_4(v_0000=0, v_0001=0, v_0002=0, v_0011=0, v_0012=0, v_0022=0, v_0111=0, v_0112=0, v_0122=0, v_0222=0, v_1111=0, v_1112=0, v_1122=0, v_1222=0, v_2222=0)
)
force_i_fmm_sA_null = [-1.00133257e+00 -5.70430926e-04 -0.00000000e+00]

Now we just need the analytical force to compare

1770 def analytic_force_i(x_i, x_j, Gconst):
1771     force_i_direct = (x_j[0] - x_i[0], x_j[1] - x_i[1], x_j[2] - x_i[2])
1772     force_i_direct /= np.linalg.norm(force_i_direct) ** 3
1773     force_i_direct *= m_i
1774     return force_i_direct
1775
1776
1777 force_i_exact = analytic_force_i(x_i, x_j, Gconst)
1778 print("force_i_exact =", force_i_exact)
force_i_exact = [-1.  0.  0.]
1781 abs_error = np.linalg.norm(force_i - force_i_exact)
1782 rel_error = abs_error / np.linalg.norm(force_i)
1783
1784
1785 b_B_size = np.linalg.norm(np.array(s_B) - np.array(x_j))
1786 b_dist = np.linalg.norm(np.array(x_i) - np.array(s_B))
1787 angle = (b_B_size) / b_dist
1788
1789 print("abs_error =", abs_error)
1790 print("rel_error =", rel_error)
1791 print("angle =", angle)
1792
1793 assert rel_error < 1e-2
abs_error = 0.0014495314137262958
rel_error = 0.0014476021434907016
angle = 0.23249527748763862

Let’s code MM in a box

1799 def run_mm(x_i, x_j, s_B, m_j, order, do_print):
1800
1801     b_j = (x_j[0] - s_B[0], x_j[1] - s_B[1], x_j[2] - s_B[2])
1802     r = (s_B[0] - x_i[0], s_B[1] - x_i[1], s_B[2] - x_i[2])
1803
1804     if do_print:
1805         print("x_i =", x_i)
1806         print("x_j =", x_j)
1807         print("s_B =", s_B)
1808         print("b_j =", b_j)
1809         print("r =", r)
1810
1811     # compute the tensor product of the displacment
1812     if order == 1:
1813         Q_n_B = shamrock.math.SymTensorCollection_f64_0_0.from_vec(b_j)
1814     elif order == 2:
1815         Q_n_B = shamrock.math.SymTensorCollection_f64_0_1.from_vec(b_j)
1816     elif order == 3:
1817         Q_n_B = shamrock.math.SymTensorCollection_f64_0_2.from_vec(b_j)
1818     elif order == 4:
1819         Q_n_B = shamrock.math.SymTensorCollection_f64_0_3.from_vec(b_j)
1820     elif order == 5:
1821         Q_n_B = shamrock.math.SymTensorCollection_f64_0_4.from_vec(b_j)
1822     else:
1823         raise ValueError("Invalid order")
1824
1825     # multiply by mass to get the mass moment
1826     Q_n_B *= m_j
1827
1828     if do_print:
1829         print("Q_n_B =", Q_n_B)
1830
1831     # green function gradients
1832     if order == 1:
1833         D_n = shamrock.phys.green_func_grav_cartesian_1_1(r)
1834     elif order == 2:
1835         D_n = shamrock.phys.green_func_grav_cartesian_1_2(r)
1836     elif order == 3:
1837         D_n = shamrock.phys.green_func_grav_cartesian_1_3(r)
1838     elif order == 4:
1839         D_n = shamrock.phys.green_func_grav_cartesian_1_4(r)
1840     elif order == 5:
1841         D_n = shamrock.phys.green_func_grav_cartesian_1_5(r)
1842     else:
1843         raise ValueError("Invalid order")
1844
1845     if do_print:
1846         print("D_n =", D_n)
1847
1848     if order == 1:
1849         result = shamrock.phys.contract_grav_moment_to_force_1(Q_n_B, D_n)
1850     elif order == 2:
1851         result = shamrock.phys.contract_grav_moment_to_force_2(Q_n_B, D_n)
1852     elif order == 3:
1853         result = shamrock.phys.contract_grav_moment_to_force_3(Q_n_B, D_n)
1854     elif order == 4:
1855         result = shamrock.phys.contract_grav_moment_to_force_4(Q_n_B, D_n)
1856     elif order == 5:
1857         result = shamrock.phys.contract_grav_moment_to_force_5(Q_n_B, D_n)
1858     else:
1859         raise ValueError("Invalid order")
1860
1861     Gconst = 1  # let's just set the grav constant to 1
1862     force_i = -Gconst * np.array(result)
1863     if do_print:
1864         print("force_i =", force_i)
1865
1866     force_i_exact = analytic_force_i(x_i, x_j, Gconst)
1867     if do_print:
1868         print("force_i_exact =", force_i_exact)
1869
1870     b_B_size = np.linalg.norm(np.array(s_B) - np.array(x_j))
1871     b_dist = np.linalg.norm(np.array(x_i) - np.array(s_B))
1872
1873     angle = (b_B_size) / b_dist
1874
1875     if do_print:
1876         print("b_A_size =", b_A_size)
1877         print("b_B_size =", b_B_size)
1878         print("b_dist =", b_dist)
1879         print("angle =", angle)
1880
1881     return force_i, force_i_exact, angle
1886 plt.figure()
1887 for order in range(1, 6):
1888     print("--------------------------------")
1889     print(f"Running MM order = {order}")
1890     print("--------------------------------")
1891
1892     # set seed
1893     rng = np.random.default_rng(111)
1894
1895     N = 50000
1896
1897     # generate a random set of position in a box of bounds (-1,1)x(-1,1)x(-1,1)
1898     x_i_all = []
1899     for i in range(N):
1900         x_i_all.append((rng.uniform(-1, 1), rng.uniform(-1, 1), rng.uniform(-1, 1)))
1901
1902     # same for x_j
1903     x_j_all = []
1904     for i in range(N):
1905         x_j_all.append((rng.uniform(-1, 1), rng.uniform(-1, 1), rng.uniform(-1, 1)))
1906
1907     box_scale_fact_all = np.linspace(0, 0.1, N).tolist()
1908
1909     # same for box_2_center
1910     s_B_all = []
1911     for p, box_scale_fact in zip(x_j_all, box_scale_fact_all):
1912         s_B_all.append(
1913             (
1914                 p[0] + box_scale_fact * rng.uniform(-1, 1),
1915                 p[1] + box_scale_fact * rng.uniform(-1, 1),
1916                 p[2] + box_scale_fact * rng.uniform(-1, 1),
1917             )
1918         )
1919
1920     angles = []
1921     rel_errors = []
1922
1923     for x_i, x_j, s_B in zip(x_i_all, x_j_all, s_B_all):
1924
1925         force_i, force_i_exact, angle = run_mm(x_i, x_j, s_B, m_j, order, do_print=False)
1926
1927         abs_error = np.linalg.norm(force_i - force_i_exact)
1928         rel_error = abs_error / np.linalg.norm(force_i_exact)
1929
1930         if angle > 5.0 or angle < 1e-4:
1931             continue
1932
1933         angles.append(angle)
1934         rel_errors.append(rel_error)
1935
1936     print(f"Computed for {len(angles)} cases")
1937
1938     plt.scatter(angles, rel_errors, s=1, label=f"MM order = {order}")
1939
1940
1941 def plot_powerlaw(order, center_y):
1942     X = [1e-3, 1e-2 / 3, 1e-1]
1943     Y = [center_y * (x) ** order for x in X]
1944     plt.plot(X, Y, linestyle="dashed", color="black")
1945     bbox = dict(boxstyle="round", fc="blanchedalmond", ec="orange", alpha=0.9)
1946     plt.text(X[1], Y[1], f"$\\propto x^{order}$", fontsize=9, bbox=bbox)
1947
1948
1949 plot_powerlaw(1, 1)
1950 plot_powerlaw(2, 1)
1951 plot_powerlaw(3, 1)
1952 plot_powerlaw(4, 1)
1953 plot_powerlaw(5, 1)
1954
1955 plt.xlabel("Angle")
1956 plt.ylabel("Relative Error")
1957 plt.xscale("log")
1958 plt.yscale("log")
1959 plt.title("MM precision")
1960 plt.legend(loc="lower right")
1961 plt.grid()
1962 plt.show()
MM precision
--------------------------------
Running MM order = 1
--------------------------------
Computed for 49923 cases
--------------------------------
Running MM order = 2
--------------------------------
Computed for 49923 cases
--------------------------------
Running MM order = 3
--------------------------------
Computed for 49923 cases
--------------------------------
Running MM order = 4
--------------------------------
Computed for 49923 cases
--------------------------------
Running MM order = 5
--------------------------------
Computed for 49923 cases

Total running time of the script: (0 minutes 58.088 seconds)

Estimated memory usage: 147 MB

Gallery generated by Sphinx-Gallery